hMEIS*

A Hypergraph Partitioning Package
Version 1.5.3

George Karypis and Vipin Kumar

University of Minnesota, Department of Computer Science & Engineering
Army HPC Research Center
Minneapolis, MN 55455

{karypis, kumar} @cs.umn.edu
November 22, 1998

Metis [MEE tig]: Metis was a titaness in Greek mythology. She was the consort of Zeus and the mother of Athena.
She presided over all wisdom and knowledge.

*hMETS is copyrighted by the regents of the University of Minnesota. This work was supported by IST/BMDO through Army Research
Office contract DA/DAAH04-93-G-0080, and by Army High Performance Computing Research Center under the auspices of the Department
of the Army, Army Research Laboratory cooperative agreement number DAAH04-95-2-0003/contract number DAAH04-95-C-0008, the content
of which does not necessarily reflect the position or the policy of the government, and no official endorsement should be inferred. Access to
computing facilities were provided by Minnesota Supercomputer Institute, Cray Research Inc. Related papers are available via WWW at URL:
http://www.cs.umn.edu/ karypis

Contents
1 Introduction

2 What ishMETS
2.1 Overview of the Algorithmsused in hMETISo

3 hMETNS’s Stand-Alone Programs

31 ShMELS e e
32 hmetis
33 Khmetis e
34 Format of HypergraphlnputFile
35 FormatoftheFixFile. e
3.6 Formatof OutputFile
4 hMEeNS’sLibrary Interface
4.1 HMETISPartReCUrSIVE o e e e e e e e e e e e
42 HMETIS PartKway e
5 General Guidelineson How to Use hMETIS
5.1 SedectingtheProper Parameters
51.1 EffectoftheCTypeParameter e
51.2 EffectoftheRTypeParameter e e e e
52 Computingak-way Partitioning e e
521 EffectoftheNrunsParameter e
522 EffectoftheReconst Parameter

6 System Requirementsand Contact I nfor mation

» w

= O 00N O N

1 Introduction

Hypergraph partitioning is an important problem and has extensive applicationsin many areas, including VLS| design
[2], efficient storage of large databases on disks [13], transportation management, and data-mining [5]. The problem
is to partition the vertices of a hypergraph in k roughly equal parts, such that the number of hyperedges connecting
verticesin different partsis minimized. A hypergraphis a generalization of agraph, wherethe set of edgesis replaced
by aset of hyperedges. A hyperedge extends the notion of an edge by allowing more than two vertices to be connected
by a hyperedge.

2 Whatis hM ENS

hMETS is a software package for partitioning large hypergraphs, especially those arising in circuit design. The algo-
rithmsin hMETS are based on multilevel hypergraph partitioning described in [10, 11, 7], and they are an extension of
the widely used METIS graph partitioning package described in [9, 8]. Traditional graph partitioning algorithms com-
pute a partition of a graph by operating directly on the original graph as illustrated in Figure 1(a). These algorithms
are often too slow and/or produce poor quality partitions. Multilevel partitioning algorithms, on the other hand, take a
completely different approach[6, 9, 8, 10]. These algorithms, asillustrated in Figure 1(b), reduce the size of the graph
(or hypergraph) by collapsing vertices and edges (during the coarsening phase), partition the smaller graph (initial
partitioning phase), and then uncoarsen it to construct a partition for the original graph (uncoarsening and refinement
phase). hMETS uses novel approachesto successively reduce the size of the hypergraph as well asto further refine the
partition during the uncoarsening phase. During coarsening, hMETS employs agorithms that make it easier to find a
high-quality partition at the coarsest graph. During refinement, hMETS focuses primarily on the portion of the graph
that is close to the partition boundary. These highly tuned algorithms allow hMETIS to quickly produce high-quality
partitionsfor alarge variety of hypergraphs.

Multilevel partitioning algorithms compute a partition
at the coarsest graph and then refine the solution!

Traditional partitioning algorithms compute
a partition directly on the original graph!

(CY

Initial Partitioning Phase

(b)
Figure 1: (a) Traditional partitioning algorithms. (b) Multilevel partitioning algorithms.

The advantages of hMEIS compared to other similar algorithms are the following:

O Provideshigh quality partitionsl!
Experiments on alarge number of hypergraphsarising in various domainsincluding VLSI, databases, and data
mining show that hMETIS produces partitions that are consistently better than those produced by other widely
used algorithms, such as KL, FM, LA, PROP, CLIP, etc.

O Itisextremely fast!
Experimentson awiderange of hypergraphshas shown that hMETIS is oneto two orders of magnitude faster than
other widely used partitioning algorithms. hMETS can produce extremely high quality bisections of hypergraphs
with 100,000 vertices in well under 3 minutes on an R10000-based SGI workstation and a Pentium Pro-based
personal computer.

2.1 Overview of the Algorithms used in hMETS

In the rest of this section, we briefly describe the various phases of the multilevel algorithm. The reader should refer
to [10] for further details.

Coarsening Phase During the hypergraph coarsening phase, a sequence of successively smaller hypergraphs
is constructed. The purpose of coarsening is to create a small hypergraph, such that a good bisection of the small
hypergraph is not significantly worse than the bisection directly obtained for the original hypergraph. In addition
to that, hypergraph coarsening also helps in successively reducing the size of the hyperedges. That is, after severa
levels of coarsening, large hyperedges are contracted to hyperedges connecting just afew vertices. Thisis particularly
helpful, since refinement heuristics based on the Kernighan-Lin algorithm [12, 4] are very effectivein refining small
hyperedges but are quite ineffective in refining hyperedges with a large number of vertices belonging to different
partitions. The group of verticesthat are contracted together to form single verticesin the next level coarse hypergraph
can be selected in different ways. hMETIS implements various such grouping schemes (also called matching schemégs
some of which are described in [10].

Initial Partitioning phase During theinitial partitioning phase, a bisection of the coarsened hypergraphis com-
puted. Since this hypergraph has a very small number of vertices (usualy less than 100 vertices) many different
algorithms can be used without significantly affecting the overall runtime and quality of the algorithm. hMETIS uses
multiple random bisections followed by the Fiduccia-Mattheyses(FM) refinement a gorithm.

Uncoarsening and refinement phase During the uncoarsening phase, the partitioning of the coarsest hyper-
graph is used to obtain a partitioning for the finer hypergraph. This is done by successively projecting the partitioning
to the next level finer hypergraph and using a partitioning refinement algorithm to reduce the cut and thus improve
the quality of the partitioning. Since the next level finer hypergraph has more degrees of freedom, such refinement
algorithmstend to improvethe quality. hMETS implements a variety of algorithmsthat are based on the FM algorithm
[4]. The details of some of these schemes can be found in [10].

V-Cycle Refinement The idea behind this refinement algorithm is to use the power of the multilevel paradigm
to further improve the quality of a bisection. The V-cycle refinement algorithm consists of two phases, namely a
coarsening and an uncoarsening phase. The coarsening phase preserves the initial partitioning that is input to the
algorithm. We will refer to this as restricted coarseningcheme. In this restricted coarsening scheme, the groups of
vertices that are combined to form the vertices of the coarse graphs correspond to vertices that belong only to one of
the two partitions. Asaresult, the origina bisection is preserved through out the coarsening process, and becomesthe
initial partition from which we start performing refinement during the uncoarsening phase. The uncoarsening phase
of the V-cycle refinement algorithm is identical to the uncoarsening phase of the multilevel hypergraph partitioning
algorithm described earlier. 1t moves vertices between partitions as long as such moves improve the quality of the
bisection. Note that the various coarse representations of the original hypergraph, allow refinement to further improve
the quality asit helpsit climb out of local minima.

3 hMEINS’s Stand-Alone Programs

hMETIS providesthe shmetis, hmetis, and khmetis programsthat can be used to partition a hypergraph into k parts.
Thefirst two programs (shmetis and hmetis) compute ak-way partitioning using multilevel recursive bisection [10].
Theshmetis programis suited for those userswho want to use hMETIS without getting into the details of the underlying
algorithms, while hmetis is suited for those users that want to experiment with the various algorithms used by hMETS.
Both shmetis and hmetis can also compute a k-way partitioning when certain vertices of the hypergraph have pre-
assigned partitions (i.e., there are at most k sets of vertices each fixed to a particular partition).

The third program (khmetis) computes a k-way partitioning using multilevel k-way partitioning [8]. Thisisanew
feature of hMETIS 1.5, and the underlying algorithms are still under devel opment.

3.1 shmetis

The shmetis program is invoked by providing three or four arguments at the command line as follows:

shmetis HGraphFile Nparts UBfactor
or
shmetis HGraphFile FixFile Nparts UBfactor

The meaning of the various parametersis as follows:

HGraphFile
Thisisthe name of thefile that stores the hypergraph (the format is described in Section 3.4).

FixFile Thisis the name of the file that stores information about the pre-assignment of vertices to partitions (the
format is described in Section 3.5).

Nparts This is the number of desired partitions. shmetis can partition a hypergraph into an arbitrary number
of partitions, using recursive hisection. That is, for a 4-way partition, shmetis first computes a 2-way
partition of the original hypergraph, then constructstwo smaller hypergraphs, each corresponding to one of
the two partitions, and then computes 2-way partitions of these smaller hypergraphsto obtain the desired
4-way partition!. Note that shmetis, while constructing the smaller hypergraphs, completely removes the
hyperedges that were cut during the bisection?.

UBfactor This parameter is used to specify the allowed imbalance between the partitions during recursive bisection.
This is an integer number between 1 and 49, and specifies the alowed load imbalance in the following
way. Consider a hypergraph with n vertices, each having a unit weight, and let b be the UBfactor. Then, if
the number of desired partitionsis two (i.e., we perform a bisection), then the number of vertices assigned
to each one of the two partitions will be between (50 — b)n/100 and (50 + b)n/100. For example, for
b = 5, then we will be allowing a 45-55 bisection, that is, the number of verticesin each partition will be
between 0.45n and 0.55n. Note that this allowed imbalance is applied at each bisection step, so if instead
of a2-way partition we are interested in a4-way partition, then a UBfactorof 5 will result in partitions that
can contain between 0.45%n = 0.20n and 0.55%n = 0.30n vertices. Also note that shmetis does not allow
you to produce perfectly balanced partitions. Thisis alimitation that will be lifted in future releases.

Upon successful execution, shmetis displays statistics regarding the quality of the computed partitioning and the
amount of time taken to perform the partitioning (the times are shown in seconds). The actua partitioning is stored in
afile named HGraphFile.part.Nparts, whose format is described in Section 3.6.

Figure 2 shows the output of shmetis for partitioning a hypergraph into four parts. From this figure we see that
shmetis initially printsinformation about the hypergraph, such as its name, the number of vertices (#Vtxg, the num-
ber of hyperedges (#Hedge}, and also the number of desired partitions (#Partg and allowed imbalance (UBfactor).
Next, prints information about the different bisections that were computed. In this example, since we asked for four
partitions, the algorithm computes a total of three bisections, and for each one prints information regarding the size
of the hypergraph that is bisected and the quality of the computed bisections. In particular, with respect to quality, it
prints the minimum and average number of cuts, and also the balance corresponding to the minimum cut.

The overall quality of the obtained partitioning is summarized by computing the following quality measures (in the
case of hypergraphswith weighted hyperedges, these definitions are extended in a straight-forward manner):

1. Hyperedge Cut Thisisthe nhumber of the hyperedgesthat span multiple partitions. The partitioning routines
in hMETS try to directly minimize this quantity.

Ishmetis can handle non-power of 2 partitions, by performing unbalanced bisections. That is, for a3-way partition it computes a 2-way partition
such that the first part has 2/3 of the total number of vertices, and the other part has 1/3. It then it bisects the first part into two egual-size parts,
each containing 1/3 of the original number of vertices.

2The hmetis program allows you to change this behavior.

2. Sum of External Degrees The external degree |E(P;)| of a partition P, is defined as the number of hyper-
edges, that areincident but not fully inside this partition. The sum of the external degrees of ak-way partitioning,
isthen YK | [E(P)).

3. Scaled Cost Thisisdefined as

1 Zk: [E(R)]
nk—-1 & wR) ’
where w(P;) isthe sum of the vertex weights of partition P; (note that if the vertices do not have weights, then
w(PR) = |R]).

4. Absorption Thisisdefined as
k

lenkh|l—1
2 T

i=1 ecE|enP; £0
where E isthe set of hyperedges, |en P | is the number of vertices of hyperedge e that are also in partition P,
and |e| is the number of verticesin the hyperedgee.

Following these quality measures, shmetis prints the size of the various partitions as well as the external degrees of
each partition. Finally, it shows the time taken by the various phases of the algorithm. All times are in seconds.

pronpt % shnetis i bnD2. hgr 4 5 \

EE R R R S R R

HVETI S 1.5.3 Copyright 1998, Regents of the University of M nnesota

Hyper Graph Information ----------------------- -
Nane: ibnD2. hgr, #Vtxs: 19601, #Hedges: 19584, #Parts: 4, UBfactor: 0.05
Options: HFC, FM Reconst-Fal se, V-cycles @End, No Fi xed Vertices

Recursive Partitioning. .. -----commmmmm e

Bi secting a hgraph of size [vertices=19601, hedges=19584, bal ance=0. 50]
The mi ncut for this bisection = 262, (average = 277.8) (balance = 0.46)

Bi secting a hgraph of size [vertices=9028, hedges=8501, bal ance=0. 50]
The mincut for this bisection = 186, (average = 241.4) (balance = 0.49)

Bi secting a hgraph of size [vertices=10573, hedges=10821, bal ance=0. 50]
The mincut for this bisection = 192, (average = 193.5) (balance = 0.47)

Summary for the 4-way partition:

Hyper edge Cut: 619 (mnimze)

Sum of External Degrees: 1305 (mnimze)
Scal ed Cost: 4.56e-06 (mnimze)

Absorption: 19336. 20 (maxi m ze)

Partition Sizes & External Degrees:
4669[382] 4303[276] 5048[338] 5581[309]

Timing Information -------emmmmmmmm e

Partitioning Tinme: 73. 340sec
/0O Tine: 0. 230sec

!**/

Figure 2: Output of shmetis for ibm02.hgr and a 4-way partition

3.2 hmetis

The program hmetis isinvoked by providing 9 or 10 command line arguments as follows:

hmetis HGraphFile Nparts UBfactor Nruns CType RType Vcycle Reconst dbglvl
or
hmetis HGraphFile FixFile Nparts UBfactor Nruns CType RType Vcycle Reconst dbglvl

The meaning of the various parametersis as follows:

HGraphFile, FixFile, Nparts, UBfactor
The meaning of these parametersisidentical to those of shmetis.

Nruns Thisisthe number of the different bisectionsthat are performed by hmetis. It isanumber greater or equal
to one, and instructs hmetis to compute Nrunsdifferent bisections, and select the best asthe final solution.
A default value of 10 is used by shmetis.

Section 5.2.1 provides an experimental evaluation of the effect of Nrunsin the quality of k-way partition-
ings.

CType Thisisthetype of vertex grouping scheme (i.e., matching scheme) to use during the coarsening phase. It
is an integer parameter and the possible values are:

1 Selects the hybrid first-choice scheme (HFC). This scheme is a combination of the first-choice and
greedy first-choice scheme described later. Thisisthe scheme used by shmetis.

2 Sdlectsthe first-choice scheme (FC). In this scheme vertices are grouped together if they are present in
multiple hyperedges. Groups of vertices of arbitrary size are allowed to be collapsed together.

3 Selects the greedy first-choice scheme (GFC). In this scheme vertices are grouped based on the first-
choice scheme, but the grouping is biased in favor of faster reduction in the number of the hyperedges
that remain in the coarse hypergraphs.

4 Selects the hyperedge scheme. In this scheme vertices are grouped together that correspond to entire
hyperedges. Preferenceis given to hyperedgesthat have large weight.

5 Selectsthe edge scheme. In this scheme pairs of vertices are grouped together if they are connected by
multiple hyperedges.

You may have to experiment with this parameter to see which scheme works better for the classes of
hypergraphsthat you are using. Section 5.1.1 provides an experimental evaluation of the various values of
CType for arange of hypergraphs.

RType Thisisthe type of refinement policy to use during the uncoarsening phase. It is an integer parameter and
the possible values are:

1 Selectsthe Fiduccia-Mattheyses (FM) refinement scheme. Thisis the scheme used by shmetis.

2 Selects the one-way Fiduccia-Mattheyses refinement scheme. In this scheme, during each iteration of
the FM algorithm, vertices are allowed to move only in asingle direction.

3 Sdlectsthe early-exit FM refinement scheme. In this scheme, the FM iteration is aborted if the quality
of the solution does not improve after arelatively small number of vertex moves.

Experiments have shown that FM and one-way FM produce better results than early-exit FM. However,
early-exit FM is considerably faster, and the overall quality is not significantly worse. Section 5.1.2 pro-
vides an experimental evaluation of the various values of RType for arange of hypergraphs.

Vceycle Thisparameter selectsthetype of V-cyclerefinement to be used by the algorithm. Itisan integer parameter
and the possible values are:

Reconst

dbglvl

Does not perform any form of V-cycle refinement.

Performs V -cycle refinement on the final solution of each bisection step. That is, only the best of the
Nrunshisections are refined using V-cycles. Thisisthe options used by shmetis.

PerformsV -cycl e refinement on each intermediate solution whose quality is equally good or better than
the best found so far. That is, as hmetis computes Nrunshbisections, for each bisection that matches or
improvesthe best one, it is also further refined using V -cycles.

Performs V -cycle refinement on each intermediate solution. That is, each one of the Nrunsbisections
is aso refined using V-cycles.

Experiments have shown that the second and third choices offer the best time/quality tradeoffs. If timeis
not an issue, the fourth choice (i.e., Vcycle = 3) should be used.

This parameter is used to select the scheme to be used in dealing with hyperedges that are being cut during
the recursive bisection. It is an integer parameter and the possible values are:

0

This scheme removes any hyperedges that were cut while constructing the two smaller hypergraphsin
the recursive bisection step. In other words, once a hyperedgeis being cut, it is removed from further
consideration. Essentially this scheme focuses on minimizing the number of hyperedgesthat are being
cut. Thisisthe scheme that is used by shmetis.

This scheme reconstructs the hyperedges that are being cut, so that each of the two partitions retain the
portion of the hyperedgethat correspondsto its set of vertices.

Section 5.2.2 provides an experimental eval uation of the effect of Reconst in the quality of k-way partition-
ings.

Thisis used to request hMETS to print debugging information. The value of dbglvlis computed as the sum
of codes associated with each option of hmetis. The various options and their values are as follows:

o A~ N L O

16

Show no additional information.

Show information about the coarsening phase.

Show information about the initial partitioning phase.
Show information about the refinement phase.

Show information about the multiple runs.

Show additional information about the multiple runs.

For example, if we want to see al information about the multiple runs the value of dbglvl should be
8 + 16 = 24. Note that some of the options may generate alot of output. Use them with caution.

Upon successful execution, hmetis displays statistics regarding the quality of the computed partitioning and
the amount of time taken to perform the partitioning. The actua partitioning is stored in a file named HGraph-
File.part.Nparts, whose format is described in Section 3.6. Figure 3 shows the output of hmetis for a 2-way partition.

3.3 khmetis

The khmetis program is invoked by providing 7 command line arguments as follows:

khmetis HGraphFile Nparts UBfactor Nruns CType OType Vcycle dbglvl

The meaning of the various parametersis as follows:

HGraphFile, Nparts, Nruns, CType, Vcycle, dbglvl
The meaning of these parametersisidentical to those of hmetis.

UBfact

OType

Upo

File.pa
partitio

ﬂronpt%hnetisibrros.hgr 25101130 24 \

R R e R R R

HMVETI S 1.5.3 Copyright 1998, Regents of the University of M nnesota
HyperGraph I nformati on ------cmmmmmm e
Name: ibnD3. hgr, #Vtxs: 23136, #Hedges: 27401, #Parts: 2, UBfactor: 0.05
Options: HFC, FM Reconst-Fal se, Always V-cycle, No Fixed Vertices

Recursive Partitioning... ----------mmmmmmm oo

Bi secting a hgraph of size [vertices=23136, hedges=27401, bal ance=0. 50]

Cut of trial 0: 979 [0. 50]
Cut of trial 1: 957 [0. 46]
Cut of trial 2: 979 [0. 50]
Cut of trial 3: 982 [0. 48]
Cut of trial 4: 1010 [0. 47]
Cut of trial 5: 956 [0. 46]
Cut of trial 6: 990 [0. 50]
Cut of trial 7: 957 [0. 46]
Cut of trial 8: 1142 [0. 48]
Cut of trial 9: 956 [0. 46]

The mi ncut for this bisection = 956, (average = 990.8) (balance = 0.46)

Summary for the 2-way partition:

Hyper edge Cut: 956 (mnimze)

Sum of External Degrees: 1912 (mnimze)
Scal ed Cost: 7.18e-06 (mnimze)

Absorption: 27029.76 (maxi m ze)

Partition Sizes & External Degrees:
12419[956] 10717[956]

Timing Information ------emmmmmmmmm e

Partitioning Tine: 85. 190sec
1/O Tine: 0. 280sec

&**/

Figure 3: Output of hmetis for ibm03.hgr and a 2-way partition

or This parameter is used to specify the allowed imbalance between the k partitions. Thisis an integer greater
than 5 and specifies the allowed load imbalance as follows. A value of b for UBfactor indicates that the
weight of the heaviest partition should not be more than b% greater than the average weight. For example,
for b = 8, k = 5, and a hypergraph with n vertices (each having unit vertex weight), the weight of the
heaviest partition will be bounded from above by 1.08 % n/5. Note that this specification of the allowed
imbalance between the k partitionsis different from the specification used by either shmetis or hmetis.

This determines which objective function the refinement algorithm tries to minimize. It is an integer pa-

rameter and the possible values are:

1 Minimizesthe hyperedgecut.
2 Minimizesthe sum of external degrees (SOED).

This feature was introduced with version 1.5.3.

n successful execution, khmetis displays statistics regarding the quality of the computed partitioning and
the amount of time taken to perform the partitioning. The actual partitioning is stored in a file named HGraph-
rt.Nparts, whose format is described in Section 3.6. Figure 4 shows the output of khmetis for a 10-way

ning.

pronpt % khnetis i bnd4. hgr 10 10 10 1 1 2 24 \

EE R R R S R I R R R T

HVETI S 1.5.3 Copyright 1998, Regents of the University of M nnesota

HyperGraph Information -----------mmmmmm
Name: ibnD4. hgr, #Vtxs: 27507, #Hedges: 31970, #Parts: 10, UBfactor: 1.10
Options: HFC, Cut-minimzation, V-cycle for Mn

K-way Partitioni Ng... -------cmmmm e

Partitioning a hgraph of size [vertices=27507, hedges=31970, bal ance=1. 10]
Cut/ SCED of trial : 3259 7333 [1.10]
Cut/ SCED of trial 3498 7946 [1.09]
Cut/ SCED of trial 3397 7728 [1.10]
Cut/ SCED of trial 3192 7242 [1.10]
Cut/ SCED of trial 3277 7283 [1.10]
Cut/ SCED of trial 3314 7555 [1.07]
Cut/ SCED of trial 3390 7554 [1.10]
Cut/ SCED of trial 3414 7723 [1.06]
Cut/ SCED of trial 3307 7357 [1.10]
Cut/ SCED of trial : 3322 7433 [1.10]
The mincut for this partitioning = 3192, (average = 3337.0) (balance = 1.10)

eeNoOhONRO

Summary for the 10-way partition:

Hyper edge Cut: 3192 (mnimze)

Sum of External Degrees: 7242 (mnimze)
Scal ed Cost: 1.06e-05 (mnimze)

Absorption: 30250. 46 (maxi m ze)

Partition Sizes & External Degrees:
2504[701] 2796[515] 2728[634] 2836[1092] 3020[1007]
2686[794] 2662[549] 2706[740] 2906[508] 2663[702]

Timng Informati On ------mmm e e e
Partitioning Time: 136. 720sec
I/ O Tine: 0. 310sec

E**/

Figure 4: Output of khmetis for ibm04.hgr and a 10-way partition

Note that khmetis should never be used to compute abisection (i.e., 2-way partitioning) asit producesworseresults
than hmetis. Furthermore, the quality of the partitionings produced by khmetis for small values of k will be worse,
in general, than the corresponding partitionings computed by hmetis. However, khmetis is particularly useful for
computing k-way partitionings for relatively large values of k, as it often produces better partitionings and it can also
enforce tighter balancing constraints.

3.4 Format of Hypergraph Input File

The primary input of hMETIS is the hypergraph to be partitioned. This hypergraphis stored in afile and is supplied to
hMETIS as one of the command line parameters. A hypergraph H = (V, EM) with V vertices and EM hyperedgesis
stored in a plain text file that contains |EM| + 1 lines, if there are no weights on the verticesand |EM| + |V| + 1 lines
if there are weights on the vertices. Any line that starts with ‘%’ is acomment line and is skipped.

Thefirst line contains either two or three integers. Thefirst integer is the number of hyperedges (|E"|), the second
is the number of vertices (|V|), and the third integer (fmf) contains information about the type of the hypergraph. In
particular, depending on the value of fmt, the hypergraph H can have weights on either the hyperedges, the vertices,
or both. In the case that H is unweighted (i.e., all the hyperedges and vertices have the same weight), fmtis omitted.

10

After thisfirst line, the remaining |E"| lines store the vertices contained in each hyperedge—oneline per hyperedge. In
particular, thei th line (excluding comment lines) containsthe verticesthat areincludedin the (i — 1)th hyperedge. This
formatisillustrated in Figure 5(a). Weighted hyperedgesare specified as shownin Figure 5(b). Thefirst integer in each
line contains the weight of the respective hyperedge. Note, hyperedge weights are integer quantities. Furthermore,
note that the fmt parameter is equal to 1, indicating the fact that H has weights on the hyperedges. Finally, weights
on the vertices are also allowed, as illustrated in Figure 5(c). In this case, |V| lines are appended to the input file
containing the weight of the |V | vertices. Note that the value of fmtis equal to 10. As was the case with hyperedge
weights, vertex weights are integer quantities. Figure 5(d) shows the case when both the hyperedges and the vertices
areweighted. fmtin this caseis equal to 11.

Figure 5 shows the HGraphFile expected by hMETIS for the example hypergraphs shown in the figure. It shows
the four cases in which the hypergraph is unweighted, has weighted hyperedges, has weighted vertices and has both
hyperedges and vertices weighted. The hypergraph shown in Figure 5(a) has four unweighted hyperedges a, b, c,
and d. Number of verticesin the hypergraphis 7. When the hypergraph is unweighted, first line of the HGraphFile
contains two integers denoting the number of hyperedges and the number of the vertices in the hypergraph. After
that, each line correspondsto a hyperedge containing an entry for each vertex in the hyperedge. Hypergraph shownin
Figure 5(b) has hyperedge weights equal to 2, 3, 7, and 8 on each of the hyperedgea, b, ¢, and d respectively. For this
weighted hyperedgesfirst line of the HGraphFile consists of three integers. Third integer specify that the hyperedges
are weighted and is equal to 1. Each line corresponding to each hyperedge, has first entry equal to its weight. The
following entries correspondsto the verticesin the respective hyperedge. The case when both the vertices are weighted
fmtis equal to 10, and 7 lines corresponding to the 7 vertices are appended to the input file each containing weight
of the respective vertex. Thisis shown in Figure 5(c). Figure 5(d) shows the case when both the hyperedges and the
vertices are weighted.

3.5 Format of the Fix File

The FixFile is used to specify the vertices that are pre-assigned to certain partitions. In general, when computing a
k-way partitioning, up to k sets of vertices can be specified, such that each set is pre-assigned to one of the k partitions.
For a hypergraphwith |V | vertices, the FixFile consists of |V | lines with a single number per line. Theith line of the
file contains either the partition number to which theith vertex is pre-assigned to, or -1 if that vertex can be assigned
to any partition (i.e., free to move). Note that the partition numbers start from 0.

3.6 Format of Output File

The output of hMETS is a partition file. The partition file of a hypergraphwith |V | vertices, consists of |V| lineswith
asingle number per line. Theith line of the file contains the partition number that the i th vertex belongs to. Partition
numbersstart from O. If f 00. gr aph isthe name of the file storing the hypergraph, the partition for a2-way partition
isstored in afilenamedf 0o. gr aph. part. 2.

4 hMETNS’s Library Interface

The hypergraph partitioning algorithms in hMENS can also be accessed directly using the stand-alone library
I i bhreti s. a. Thislibrary provides the HMETIS_PartRecursive() and HMETIS_PartKway() routines. The first
routine corresponds to the hmetis whereas the second routine corresponds to the khmetis program. The calling
seguences and the description of the various parameters of these routines are as follows:

4.1 HMETIS_ PartRecursive

HMETIS_PartRecursive (int nvtxs, int nhedges, int *vwgts, int *eptr, int *eind, int *hewgts, int nparts,
int ubfactor, int *options, int * part, int * edgecut)

11

GraphFile

GraphFile GraphFile
4 7 10 4 7 11
12 212
1756 3175€6
56 4 856 4
2 3 4 72 34
5 5
1 1
8 8
7 7
3 3
9 9
3 3
(c) (d)

Figure 5: (a) HGraphFile for unweighted hypergraph, (b) HGraphFile for weighted hyperedges, (c) HGraphFile for weighted ver-
tices, and (d) HGraphFile for weighted hyperedges and vertices

12

nvtxs, nhedges

vwgts

eptr, eind

hewgts

nparts

ubfactor

options

part

The number of vertices and the number of hyperedgesin the hypergraph, respectively.

An array of size nvtxsthat stores the weight of the vertices. Specifically, the weight of vertex i is stored at
vwgts[i]. If the verticesin the hypergraph are unweighted, then vwgtscan be NULL.

Two arraysthat are used to describe the hyperedgesin the graph. Thefirst array, eptr, is of sizenhedges+1
and it is used to index the second array eindthat stores the actual hyperedges. Each hyperedgeis stored as
a sequence of the vertices that it spans, in consecutive locationsin eind Specifically, theith hyperedgeis
stored starting at location eind[eptr[i]] up to (but not including) eind[eptr[i + 1]] . Figure 6 illustrates this
format for asimple hypergraph. The size of the array eind depends on the number and type of hyperedges.

Also note that the numbering of vertices starts from 0.

An array of size nhedgeshat stores the weight of the hyperedges. The weight of thei hyperedgeis stored
at location hewgts]i]. If the hyperedgesin the hypergraph are unweighted, then hewgtscan be NULL.

The number of desired partitions.

This is the relative imbalance factor to be used at each bhisection step. Its meaning is identical to the
UBfactorparameter of shmetis, and hmetis described in Section 3.

Thisis an array of 9 integers that is used to pass parameters for the various phases of the algorithm. If
options[0]=0 then default values are used. If options[0]=1, then the remaining elements of optionsare
interpreted as follows:

optiong1] Determines the number of different bisections that is computed at each bisection step of the
algorithm. Its meaning is identical to the Nruns parameter of hmetis (described in Sec-
tion 3.2).

optiong2] Determines the scheme to be used for grouping vertices during the coarsening phase. Its
meaning is identical to the CTypeparameter of hmetis (described in Section 3.2).

options[3] Determinesthe scheme to be used for refinement during the uncoarsening phase. Its meaning
isidentical to the RTypeparameter of hmetis (described in Section 3.2).

optiong4] Determines the scheme to be used for V-cycle refinement. Its meaning is identical to the
Vcycleparameter of hmetis (described in Section 3.2).

optiong5] Determines the scheme to be used for reconstructing hyperedges during recursive bisections.
Its meaning isidentical to the Reconsparameter of hmetis (described in Section 3.2).

optiong6] Determines whether or not there are sets of vertices that need to be pre-assigned to certain
partitions. A value of 0 indicates that no pre-assignment is desired, whereas a value of 1
indicates that there are sets of vertices that need to be pre-assigned. In this later case, the pa
rameter part is used to specify the partitions to which vertices are pre-assigned. In particular,
part[i] will store the partition number that vertex i is pre-assignedto, and —1 if it isfreeto
move.

optiong7] Determines the random seed to be used to initialize the random number generator of hMETIS.
A negative value indicates that a randomly generated seed should be used (default behavior).

optiong 8] Determinesthe level of debugging information to be printed by hMETIS. Its meaning is iden-

tical to the dbglvl parameter of hmetis (described in Section 3.2). The default valueis 0.
Thisisan array of size nvtxsthat returns the computed partition. Specifically, part[i] containsthe partition
number in which vertexi belongsto. Note that partition numbers start from 0.

Note that if options[6] = 1, then the initial values of part are used to specify the vertex pre-assignment
requirements.

13

edgecut

Hyperedges
0, 2

o o w

0, 1,
3, 4,
2, 5

eptr: 0126|912

eind: |0]2]0]1]3]4a]3]a]6]|2]5]6]

Figure 6: The eptr and eind arrays that are used to describe the hyperedges of the hypergraph.

Thisis an integer that returns the number of hyperedgesthat are being cut by the partitioning algorithm.

4.2 HMETIS_PartKway
HMETIS_PartKway (int nvtxs, int nhedges, int *vwgts, int *eptr, int *eind, int * hewgts, int nparts,

int ubfactor, int *options, int * part, int * edgecut)

nvtxs, nhedges, vwgt, eptr, eind, hewgts, nparts
The meaning of these parameters is identical to meaning of the corresponding parameters of
HMETIS_PartRecursive.

ubfactor

options

part

This is the maximum load imbalance allowed in the k-way partitioning. Its meaning is identical to the
UBfactorparameter of khmetis, Section 3.3.

Thisis an array of 9 integers that is used to pass parameters for the various phases of the algorithm. If
options[0]=0 then default values are used. If options[0]=1, then the remaining elements of optionsare
interpreted as follows:

optiong 1]

options[2]

optiong 3]

options[4]

optiong 5]
optiong 6]
optiong 7]

optiong 8]

Determines the number of different k-way partitionings that is computed. Its meaning is
identical to the Nrunsparameter of khmetis (described in Section 3.3).

Determines the scheme to be used for grouping vertices during the coarsening phase. Its
meaning isidentical to the CTypeparameter of khmetis (described in Section 3.3).

Determineswhich objective function the partitioning algorithm triesto minimize. ltsmeaning
isidentical to the OTypeparameter of khmetis (described in Section 3.3). The default value
is 1 (i.e., minimize the hyperedge cut).

Determines the scheme to be used for V-cycle refinement. Its meaning is identical to the
Vcycleparameter of khmetis (described in Section 3.3).

Not used.
Not used.

Determines the random seed to be used to initialize the random number generator of hMETS.
A negative value indicates that a randomly generated seed should be used (default behavior).

Determines the level of debugging information to be printed by hMETIS. Its meaning is iden-
tical to the dbglvl parameter of khmetis (described in Section 3.3). The default valueis 0.

Thisisan array of size nvtxsthat returns the computed partition. Specifically, part[i] containsthe partition
number in which vertexi belongsto. Note that partition numbers start from 0.

14

edgecut Thisis an integer that depending on the value of options[3] returns either the number of hyperedges that
are being cut by the partitioning algorithm or the sum of the external degrees of the partitioning.

5 General Guidelines on How to Use hMEINS

5.1 Selecting the Proper Parameters

The hmetis program allows you to control the multilevel hypergraph bisection paradigm by providing a variety of
algorithmsfor performing the various phases. In particular, it allows you to control:

1. How the vertices are grouped together during the coarsening phase. Thisis done by using the CTypeparameter.

2. How the quality of the bisection is refinement during the uncoarsening phase. Thisis done by using the RType
parameter.

In designing the shmetis program, we had to make some choices for the above parameters. However, depending on
the classes of the hypergraphsthat are partitioned, these default settings may not necessarily be optimal. You should
experiment with these parameters to see which schemes work better for your classes of problems.

In this section, we present an experimental evaluation of the various choices for CTypeand RTypefor various
hypergraphstaken from the circuits of the ACM/SIGDA [3] and ISPD98 [1] benchmarks. The characteristics of these
circuits are shown in Table 1. We hope that these experiments will help in illustrating the various quality and/or
runtime trade-offs that are present in the various choices.

Circuit No. of Vertices No. of Hyperedges
(i.e., cells + pins) (i.e., nets)
avgsmall 21918 22124
avglarge 25178 25384
industry2 12637 13419
industry3 15406 21923
s35932 18148 17828
s38417 23949 23843
s38584 20995 20717
golem3 103048 144949
ibm01 12752 14111
ibm03 23136 27401
ibm05 29347 28446
ibm07 45926 48117
ibm09 53395 60902
ibm11 70558 81454
ibm13 84199 99666
ibm15 161570 186608
ibm17 185495 189581

Table 1: The characteristics of the various circuits used in the study of the various parameters of hMETS.

5.1.1 Effect of the CType Parameter
Table 2 showsthe quality of the bisections produced by hmetis for different vertex grouping schemes. The experiments
in this table were performed by setting the remaining parameters of hmetis as follows: Nruns = 2Q UBfactor = 5,
RType = 1Vcycle = 1 and Reconst = 0 For each different vertex grouping scheme, the column labeled “Min” shows
the minimum cut out of the 20 trials, the column labeled “Avg” showsthe average cut over al 20 trials, and the column
labeled “Time” shows the overall amount of time required by hmetis (i.e., the time to perform the 20 trials and the
fina V-cyclerefinement).

As we can see from this table, different vertex grouping schemes perform better for different circuits. In general,
the HFC scheme (that is used by default in shmetis) performsreasonably well for al the circuits (i.e., itiswithin afew
percentage points of the best scheme), but it is not necessarily the best. As this table suggests, one should experiment

15

with the different vertex grouping schemes, to determine which one is suited for the classes of problems that shelhe
may have.

5.1.2 Effect of the RType Parameter

Table 3 shows the quality of the bisections produced by hmetis for different refinement schemes. The experiments
in this table were performed by setting the remaining parameters of hmetis as follows: Nruns = 2Q UBfactor = 5,
CType =1 Vcycle = 1, and Reconst = 0 For each different refinement scheme, the column labeled “Min” shows the
minimum cut out of the 20 trias, the column labeled “Avg” shows the average cut over all 20 trials, and the column
labeled “Time” shows the overall amount of time required by hmetis (i.e., the time to perform the 20 trials and the
final V-cycle refinement).

As we can see from this table, the three refinement schemes offer different quality/time trade-offs. In general, the
EEFM scheme requires half the time required by either the FM or the 1WayFM schemes. Moreover, the quality of
the bisections produced by EEFM, arein general only slightly worse (if any) than those produced by FM or 1WayFM.
For example, in the 17 circuits of Table 3, EEFM performed significantly worse than the other two schemes only for
ibm15 From the remaining two refinement schemes, the results of Table 3 suggest that they perform similarly with
1wayFM producing slightly better results and requiring somewhat less time.

5.2 Computing a k-way Partitioning

hMETIS can compute a k-way partitioning (for k > 2) using either the multilevel recursive bisection paradigm (im-
plemented by hmetis) or the multilevel k-way partitioning paradigm (implemented by khmetis). In our discussion
of khmetis (Section 3.3), we aready provided some general guidelines as to when someone should use hmetis or
khmetis. In general, when k is large (e.g, k > 16) khmetis should be preferred over hmetis, as it is faster and en-
forces load imbal ance constraints that are more natural than the bisection imbalance constraints enforced by hmetis.

In this section we focus our discussion on using hmetis to compute a k-way partitioning. In particular, besides the
CTypeand RTypeparameters discussed in Section 5.1, the quality of the resulting k-way partitioning also depends on
the choice of the Nrunsand Reconsparameters.

5.2.1 Effect of the Nruns Parameter

Recall from Section 3.2, that Nrunsis the number of different bisections that are computed by hmetis during each
recursive bisection level. Out of these Nrunshbisections, the one with the smallest cut is selected and used to bisect
the hypergraph. For example, if Nruns = 2Q then in the case of a 4-way partitioning, hmetis will first compute 20
bisections of the original hypergraph, and split it into two sub-hypergraphs based on the best bisection. Then, it will
compute 20 bisections of each one of the two sub-hypergraphs, and again select the best solution for each one of the
two sub-hypergraphs. However, an alternate approach of computing the 4-way partitioning (using the same overall
number of different bisections), isto set Nruns = 5 run hmetis four times, and select the best 4-way partition out of
these four solutions. That is, instead of running

hmetis xxx.hgr 452011100

we can run
hmetis xxx.hgr 45511100
hmetis xxx.hgr 45511100
hnetis xxx.hgr 4 5511100
hnetis xxx.hgr 4 5511100

and select the best solution. The overall amount of time for both approaches should be comparable (even though the
second approach will be somewhat slower as the amount of timeit spendsin V -cyclerefinement is four times higher).
However, the quality of the solution obtained from the second approach may be better.

16

LT

HFC, CType=1 FC, CType=2 GFC, CType=3 HEDGE, CType=4 EDGE, CType=5
Circuit Min Avg Time Min Avg Time Min Avg Time Min Avg Time Min Avg Time
avgsmall 127 1452 70.48 131 157.4 81.27 127 145.6 67.93 127 163.8 111.52 127 174.3 96.99
avglarge 127 152.2 90.69 127 159.8 9341 127 1339 78.24 127 1635 134.92 127 1815 105.65
industry2 163 217.2 67.8 183 224.1 68.66 162 2125 60.38 172 226.4 75.91 170 228.7 70.85
industry3 255 267.1 97.46 249 265.9 106.74 254 273.8 85.78 255 274.9 121.38 255 289.2 109.94
s35932 43 43.6 46.18 43 434 46.81 73 73.0 41.69 43 51.4 61.50 41 47.2 48.43
s38417 49 51.8 59.83 50 51.5 61.96 49 51.4 55.88 50 69.8 90.20 50 74.5 79.03
s38584 48 49.0 66.45 48 48.6 66.68 48 50.0 63.69 48 56.6 91.68 48 59.4 75.26
golem3 1333 | 1357.2 749.55 | 1336 | 1354.5 805.76 | 1339 | 1420.2 900.33 | 1485 | 1846.5| 151837 | 1642 | 2159.7| 1582.20
ibm01 181 214.2 74.66 180 193.0 78.58 181 241.7 74.28 181 2525 93.26 181 194.7 69.47
ibm03 956 | 1017.3 216.21 952 | 1022.4 223.65 978 | 11534 209.34 962 | 1045.0 295.90 961 | 1051.3 283.78
ibm05 1715 | 1809.7 321.89 | 1723 | 1792.0 300.06 | 1738 | 1808.0 355.94 | 1747 | 1856.6 47470 | 1784 | 18925 434.22
ibm07 851 948.1 626.45 876 996.6 569.90 853 948.1 603.37 896 980.2 634.90 852 914.0 629.22
ibm09 638 704.9 484.33 637 694.1 474.96 629 675.5 412,91 636 770.0 597.89 648 718.2 554.23
ibm11 960 | 1159.2 848.06 960 | 1051.5 741.36 965 | 1184.8 74490 | 1007 | 1197.2 | 1168.02 982 | 12211 925.57
ibm13 869 930.2 939.98 861 897.9 | 1002.63 833 935.1 | 1073.89 836 | 1063.3 | 1304.32 834 987.4 | 111554
ibm15 2624 | 3058.1 | 2459.89 | 2625 | 2932.7 | 2059.90 | 2753 | 34884 | 1903.85| 2676 | 3190.6 | 2732.28 | 2732 | 3241.8| 2609.96
ibm17 2248 | 23715 | 264327 | 2220 | 2317.1 | 2536.81 | 2324 | 2507.7 | 2358.99 | 2254 | 2457.4 | 2848.69| 2295| 2487.6| 2985.52

Table 2: The performance achieved by different vertex grouping schemes (i.e., different values of CType). All the results correspond to bisections computed by hmetis with Nruns =

20, UBfactor = 5, RType = 1, Vcycle = 1, and Reconst = 0. All times are in seconds on a Pentium Pro @ 200 Mhz

FM, RType=1 lwayFM, RType=2 EEFM, RType=3

Circuit Min Avg Time Min Avg Time Min Avg Time
avagsmall 127 154.2 69.97 127 148.1 71.55 127 143.8 5551
avglarge 127 149.5 88.99 127 150.1 82.69 127 147.9 61.67
industry2 163 212.3 62.04 165 2194 64.13 162 214.8 50.41
industry3 258 274.6 97.14 257 277.2 94.30 241 271.2 76.88

s35932 43 434 47.53 43 435 51.00 43 435 38.19
s38417 49 51.4 62.14 49 51.1 64.50 49 52.2 4454
s38584 48 49.2 65.39 48 48.6 70.95 47 48.1 51.84
golem3 1334 | 13521 704.96 | 1333 | 1350.0 683.02 [1336 | 1359.8 519.59
ibm01 181 215.8 70.91 180 226.9 64.84 181 220.4 48.48
ibm03 955 | 1015.5 206.15 956 | 1010.8 173.65 956 | 1034.8 143,51
ibm05 1723 | 1804.2 337.72 | 1699 | 1765.8 276.10 | 1710 | 17919 19541
ibm07 840 935.9 547.09 842 933.9 506.66 855 966.9 299.25
ibm09 637 729.6 488.04 629 699.8 477.79 629 691.7 289.51
ibm11 960 | 1122.9 778.80 960 | 1096.7 690.31 962 | 1103.0 435.30
ibm13 859 944.3 | 1080.43 851 963.4 755.76 832 | 1029.8 633.73

ibm15 2625 | 2975.0 | 2737.74 | 2625 | 3044.8 | 2258.74 | 2856 | 3082.4 | 1593.12
ibm17 2218 | 2406.9 | 3585.65 | 2239 | 2380.7 | 3239.31 | 2218 | 2383.4 | 2181.86

Table 3: The performance achieved by different refinement schemes (i.e., different values of RType). All the results correspond to
bisections computed by hmetis with Nruns = 20, UBfactor = 5, CType = 1, Vcycle = 1, and Reconst = 0. All times are in seconds
on a Pentium Pro @ 200 Mhz

Table 4 shows the quality of the 4- and 8-way partitionings produced by the above two approaches. As we can see
from this table, the second approach performs better in 16 cases, worse in 10 cases, and similarly for the remaining 8
Cases.

4-way 8-way
Circuit Nruns=20 | 4xNruns=5 | Nruns=20 | 4xNruns=5
avgsmall 228 228 370 370
avglarge 228 228 372 372
industry2 372 355 636 644
industry3 775 744 1546 1502
s35932 111 111 163 163
s38417 99 95 162 151
s38584 131 129 203 205
golem3 2217 2224 2872 2856
ibm01 496 501 758 742
ibm03 1686 1687 2392 2410
ibm05 3081 3062 4468 4449
ibm07 2234 2183 3280 3255
ibm09 1709 1708 2606 2638
ibm11 2331 2368 3503 3445
ibm13 1663 1740 2858 2727
ibm15 5167 5190 6833 6324
ibm17 5442 5385 8723 8870

Table 4: The performance achieved for a k-way partitionings using a single k-way partitioning with Nruns = 20, and four k-way
partitionings with Nruns = 5.

5.2.2 Effect of the Reconst Parameter

Recall from Section 3.2, that the Reconsparameter controls how a hyperedge that is part of the cut is reconstructed
in the sub-hypergraphs during recursive bisection. In particular, if Reconst = Qthen a hyperedge that is part of the
cut is removed entirely from the sub-hypergraphs, and if Reconst = 1then the hyperedge is reconstructed in each
sub-hypergraph. Thisis done by creating two hyperedges (one for each partition), that span the vertices of the original
hyperedge that are assigned to each partition.

18

The choice for the Reconsparameter can affect the quality and runtime of the k-way partitioning. In particular, if
Reconst = Qthen the partitioning algorithm will run faster (as successive hypergraphswill have fewer hyperedges),
and if Reconst =] then the partitioning algorithm can potentially do a better job in reducing the sum of external
degrees (SOED) of the k-way partitioning.

Thisisillustrated in Table 5 that shows the effect of the Reconsparameter on the cut, SOED, and runtime, for a
4-way partitioning. From this table we can see that Reconst = Qindeed results in a somewhat faster code, and that
Reconst = 1resultsin partitioningswhose SOED is, in general, smaller. However, what isinteresting with the results
of Table 5, is that Reconst = Oresults in partitionings that have smaller cut, compared to those obtained by setting
Reconst = 150, if the objectiveis to obtain ak-way partitioning that has the smaller cut, one should use Reconst = 0
However, if minimizing the SOED is the primary focus, one may want to use Reconst = 1

No Reconstruction With Reconstruction
Reconst = 0 Reconst =1
Circuit Cut | SOED Time Cut | SOED Time

avgsmall 228 568 111.92 246 567 118.28
avglarge 253 605 126.82 257 569 137.67
industry2 381 841 107.47 429 884 110.56
industry3 791 1704 173.45 821 1647 179.89

s35932 111 232 72.05 111 226 72.07
s38417 100 224 96.78 109 228 99.70
s38584 130 294 106.35 138 291 111.90
golem3 2222 4613 | 1162.19 | 2239 4519 | 1226.58
ibm01 496 1003 124.53 498 998 128.04

ibm03 1691 3685 28515 | 1717 3573 301.55
ibm05 3023 6701 459.12 | 3119 6611 532.71
ibm07 2212 4670 786.26 | 2253 4579 850.59
ibm09 1691 3485 790.61 | 1768 3579 774.53
ibm11 2339 4778 | 115537 | 2412 4862 | 1198.74
ibm13 1738 3770 | 1365.23 | 1755 3604 | 1398.37
ibm15 5103 | 10815 | 3339.88 | 5299 | 10844 | 3069.92
ibm17 5398 | 11041 | 4420.78 | 5421 | 10984 | 4854.22

Table 5: The performance achieved for a 4-way partitionings using different settings for the Reconst parameter. All the results
correspond to 4-way partitioning computed by hmetis with Nruns = 20, UBfactor = 5, CType = 1, RType = 1, and Vcycle = 1. All
times are in seconds on a Pentium Pro @ 200 Mhz

6 System Requirements and Contact Information

hMETIS has been written in C and it has been extensively tested on Sun, SGlI, Linux, and IBM. Even though, hMETIS
contains no known bugs, it does not mean that it is bug free. If you find any problems, please send email to
metis@cs.umn.edu with a brief description of the problem. Also, any future updates to hMeTS will be made available
on WWW at http://mww.cs.umn.edu/ metis.

References

[1] Chalres Alpert. The ISPD98 circuit benchmark suite. In Proc. Intl. Symposium of Physical Desjdi998.

[2] CharlesJ. Alpert and Andrew B. Kahng. Recent directionsin netlist partitioning. Integration, the VLSI Journal
19(1-2):1-81, 1995.

[3] F. Brglez. ACM/SIGDA design automation benchmarks: Catalyst or anathema? IEEE Design & Test10(3):87—
91, 1993. Available on the WWW at http://visicad.cs.ucla.edu/"cheesefdbbmarks.html

[4] C. M. Fiducciaand R. M. Mattheyses. A linear time heuristic for improving network partitions. In In Proc. 19th
IEEE Design Automation Conferengages 175-181, 1982.

19

[5] Eui-Hong Han, George Karypis, Vipin Kumar, and Bamshad Mobasher. Clustering based on association rule
hypergraphs. In Proc. of Workshop on Research Issues on Data Mining and Knowledge Disct®@ry

[6] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning graphs. Technical Report
SAND93-1301, Sandia National Laboratories, 1993.

[7] G.Karypisand V. Kumar. Multilevel k-way hypergraph partitioning. Technical Report TR 98-036, Department
of Computer Science, University of Minnesota, 1998.

[8] G. Karypisand V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. Journal of Parallel and
Distributed Computing48(1):96-129, 1998. Also available on WWW at URL http://www.cs.umn.edu/"karypis.

[9] G. Karypis and V. Kumar. A fast and highly quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computind998 (to appear). Also available on WWW a URL
http://www.cs.umn.edu/"karypis. A short version appearsin Intl. Conf. on Parallel Processing 1995.

[10] GeorgeKarypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph partitioning: Appli-
cation in vlsi domain. In Proceedings of the Design and Automation Confereh@@y7.

[11] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph partitioning: Ap-
plication in vlsi domain. IEEE Transactions on VLSI Systeri998 (to appear). A short version appearsin the
proceedings of DAC 1997.

[12] B.W. Kernighanand S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell System Technical
Journal 49(2):291-307, 1970.

[13] S. Shekhar and D. R. Liu. Partitioning similarity graphs: A framework for declustering problmes. Technical Re-
port TR 94-18, University of Minnesota, Department of Computer Science, Minneapolis, MN, 1994. Accepted
in Information Systems Journal.

20

