
PAFI ∗
A Pattern Finding Toolkit

Release 1.0.1

Masakazu Seno, Michihiro Kuramochi, and George Karypis

Department of Computer Science, University of Minnesota
Minneapolis, MN 55455

Technical Report Number: 03–029

{seno, kuram, karypis}@cs.umn.edu

Last updated on July 7, 2003 at 12:57am

∗PAFI is copyrighted by the regents of the University of Minnesota. This work was supported by NSF CCR-9972519, EIA-9986042, ACI-
9982274, ACI-0133464, and by Army High Performance Computing Research Center contract number DAAH04-95-C-0008. Related papers are
available via WWW at URL:http://www.cs.umn.edu/˜karypis . The namePAFI is derived from PAttern FInding toolkit.

1

Contents

1 Introduction 3

2 The LPMiner Program 4
2.1 Input File Formats . 5

2.1.1 Transaction File . 5
2.1.2 Length-Decreasing Support Constraint File . 5

2.2 Output File Formats . 6
2.2.1 Frequent Pattern File . 6
2.2.2 PC-List File . 6

2.3 Examples . 7

3 The SLPMiner Program 9
3.1 Input File Formats . 10

3.1.1 Sequential Transaction File . 10
3.1.2 Length-Decreasing Support Constraint File . 10

3.2 Output File Formats . 11
3.2.1 Frequent Pattern File . 11
3.2.2 PC-List File . 11
3.2.3 TID List File . 11

3.3 Examples . 11

4 The FSG Program 13
4.1 Input File Format . 14

4.1.1 Graph Transaction File . 14
4.2 Output File Formats . 14

4.2.1 Frequent Pattern File . 15
4.2.2 PC-List File . 15
4.2.3 TID-List File . 15

4.3 Examples . 15

5 Filename Rules 18

6 System Requirements and Contact Information 18

7 Copyright Notice and Usage Terms 18

8 References 18

2

1 Introduction

PAFI is a set of programs that can be used to find frequent patterns in large and diverse databases. The current release
of PAFI includes three different pattern discovery programs calledLPMiner, SLPMiner, andFSG. LPMiner finds
patterns corresponding to itemsets in a transaction database and is based on the algorithm described in [5].SLPMiner
finds patterns corresponding to sub-sequences in a sequential database and is based on the algorithm described in [6].
Finally, FSG finds patterns corresponding to connected undirected subgraphs in an undirected graph database and is
based on the algorithms described in [3, 4]. These programs can be used to mine a wide-range of datasets arising in
commercial, information retrieval, and scientific applications [1].

All three programs can be used to find patterns that satisfy a constant minimum support. Moreover, a key feature of
LPMiner andSLPMiner is that they can find long frequent patterns without finding a large number of short patterns
that are often useless. This is achieved by usinglength-decreasing support constraints, where the minimum occurrence
frequency of a pattern is given as a non-increasing function of pattern length.

PAFI’s pattern discovery programs usually provide three additional functionalities. First, all three programs can
generate maximal frequent patterns. A maximal frequent pattern is a frequent pattern that is not contained by any
other frequent patterns. Generally, the number of maximal frequent patterns is much smaller than the number of all
the frequent patterns, leading to higher readability of frequent pattern files. Second,SLPMiner andFSG can generate
transaction-ID lists (TID-lists) indicating which sequences or graph transactions support a particular frequent pattern.
Third, all three programs can generateparent-children-lists (PC-lists) that can be used to construct the frequent pattern
lattice.

Outline of P AFI’s Manual

PAFI’s manual is organized as follows. Sections 2, 3, and 4 describe the command-line options of the different frequent
pattern discovery programs and the format of the input and output files that they require and generate. Section 5
describe the general filename rules associated with the various files generated byPAFI’s programs. Finally, Section 6
describes the system requirements for thePAFI package and provides contact information.

3

2 The LPMiner Program

USAGE

LPMiner [optional parameters] TranFile

DESCRIPTION

Used to find all frequent itemsets satisfying a constant or length-decreasing support constraint from a transaction
file.

REQUIRED PARAMETERS

TranFile The name of the file that stores the input transactions from which frequent itemset patterns are to be
found. The format of the transaction file is described in Section 2.1.1.

OPTIONAL PARAMETERS

-s FLOAT, --support=FLOAT
This parameter sets the constant minimum support in percentage. This value must be in the range
of [0.0, 100.0]. The default value is 5.0%. Note that if the minimum support is set to 0.0, all the
frequent patterns with at least one supporting transaction are output. If-S string option is specified,
-s float option is ignored.

-S FILE, --supptable=FILE
This parameter specifies the file that stores the length-decreasing support constraint. The format of
this file is described in Section 2.1.2. This parameter hides-s float option.

-m INT, --minsize=INT
This parameter sets the minimum length of frequent patterns to be output. The default value is one.
If this parameter is set to a value greater than one, the amount of time required to find the frequent
patterns will be decreased.

-M INT, --maxsize=INT
This parameter sets the maximum length of frequent patterns to be output. The default value is
4,294,967,295 (0xffffffff). If this parameter is set to a smaller value, then the amount of time taken
for finding frequent patterns may be decreased.

-x, --maximal
Generates maximal frequent patterns only. The current version ofLPMiner does not contain any
optimizations to actually reduce the amount of time required to find maximal patterns, and this
parameter is used solely to limit the amount of information that is being output.

-p, --parent-children-list
Generates a file that shows the parent-children relationships among frequent patterns. These rela-
tionships are referred to asPC-list. For each frequent pattern,p, its PC-list contains all frequent
patternsc, such thatc is a maximal frequent sub-pattern ofp. Note that whenLPMiner is used with
a constant support constraint, the PC-lists correspond to the frequent pattern lattice.

The PC-lists are stored in a file, which has the same name as the input file with file extension “.pc”
added. The format of the PC-list file is described in Section 2.2.2.

-h, --help
Displays a short summary of the various options to the standard output.

OUTPUT

The discovered frequent patterns are stored in a file that has the same name as the input file with file extension
“.fp” added. The format of this frequent pattern file is described in Section 2.2.1.

TheLPMiner program also generates and prints various statistics regarding the input file, the discovered frequent
patterns, and the amount of time taken during the various stages of the computation. The same information is
also appended to a file calledlpminer.log .

4

NOTE

TheLPMiner program uses an in-memory implementation. For this reason, the size of the datasets that can be
processed are limited by the amount of physical memory in your system. If that is not enough, you can use the
SLPMiner program to find frequent itemset patterns, as it is disk-based. However, the runtime ofSLPMiner is
an order of magnitude higher thanLPMiner.

2.1 Input File Formats

LPMiner takes as input two different files. The first is theTranFile that contains the transactions from which the
frequent patterns will be discovered, and the second file is the length-decreasing support constraint file (SuppFile) that
indicates the different minimum support values associated with each pattern length. Note that theSuppFile is optional
and is used only when the-S is specified. The format of these files is described in the rest of this section.

2.1.1 Transaction File

A transaction file is an ASCII file in which each line represents a transaction. A transaction is a set of items separated
by one or more spaces or tabs. Each item can be any string except -1. There are no restrictions on how the items are
ordered within each transaction. Figure 1 shows some examples of different transaction files.

1 2 4 6 7 9 11
1 2 3 4 6 7 8 9 12 13 15 17
5 7 9 10 11 13 15 18
1 2 4 5 16 19 20
0 1 2 4 8 9 11 13 15
0 1 2 6 12 14 19
2 3 6 8 9 10 12 14 15 16 19
2 4 6 7 8 11 12 14 16 17
1 2 3 4 5 8 10 14 18
0 1 2 4 6 9 11 13

item1 item3 item6 item4
item3 item6 item4 item1

item1 item4 item7
item3 item2 item7

apple orange pear melon
orange pear
orange melon peach
apple orange grape melon

(a) (c)

(b)

Figure 1: Examples of transaction files accepted by LPMiner. Note that the items can be arbitrary strings.

If a line contains nothing except spaces or tabs, the line is ignored and it is not counted when determining the
total number of transactions. Also, if a line contains duplicate items, then the duplicate occurrences of an item are
ignored. Ordering of the items within each transaction does not affect the arrangement of items in frequent pattern
files generated byLPMiner.

2.1.2 Length-Decreasing Support Constraint File

A length decreasing support constraint is a non-increasing function of pattern length,f (m) (m = 1, 2, . . .). The
length of a pattern is the number of items in the pattern. A pattern with lengthm is frequent if and only if its support is
at leastf (m)%. Thesupport of a pattern (in percentage) is defined as 100m/n, wherem is the number of transactions
supporting the pattern andn is the number of all the transaction in the input transaction file.

A length-decreasing support constraint is specified by an ASCII file. Each line of the file contains a pair of numbers
m and f (m) separated by one space. The numberm is an integer greater or equal to one andf (m) is a floating point
number(0.0 ≤ f (m) ≤ 100.0) indicating the minimum support for patterns of lengthm. Note that it must always hold
that f (m1) ≥ f (m2) for any two integersm1 andm2 such thatm1 < m2. All lines must be sorted in the ascending
order ofm. The first line of the file must always specify the minimum support form = 1. Also, for patterns whose
length is greater than the largestm value specified in the file (mmax), LPMiner finds these longer patterns using a
minimum support corresponding tof (mmax).

Figure 2(a) shows an example of length-decreasing support constraint file. Given this length-decreasing support

5

1 5.0
2 5.0
3 5.0
4 4.5
5 4.5
6 4.5
7 4.0
8 4.0
9 4.0

1 5.0
4 4.5
7 4.0

An example of
length−decreasing
support constraint file.

(a) Shortened length−decreasing
support constraint file.

(b)

Figure 2: Examples of length-decreasing support constraint files.

constraint file,LPMiner uses 4.0% as the minimum support for patterns of length greater than 9. If for a range of
pattern-lengths, the associated minimum support values are the same, then all but the first occurrence of the identical
supports can be omitted. For example, the length-decreasing support constraint file in Figure 2(a) can be shortened to
that shown in Figure 2(b).

In addition, you can specify more than 100.0 asf (m) value. In that case, no frequent patterns with lengthm will be
generated. Another special case is when you specify 0.0 asf (m) value. In that case,LPMiner outputs every pattern
that is supported by at least one transaction.

2.2 Output File Formats

Upon successful execution,LPMiner outputs the discovered patterns into a file called thefrequent pattern file. If the
-x option has been specified, then this file contains only the maximal patterns, otherwise it contains all patterns that
satisfy the minimum support constraint(s). In addition, if the user has specified the-p option,LPMiner will generate
an additional file called thePC-list file, that contains the parent-children relationships among frequent patterns. The
format of these files is described in the rest of this section.

2.2.1 Frequent Pattern File

The frequent-pattern file (*.fp) stores either the frequent or the maximal frequent patterns discovered byLPMiner.
The patterns in this file are sorted in increasing order of their pattern length. Each line has the following format:

PATTERNID FREQ SUPP PATTERN

PATTERNID is a unique identifier of the pattern and is given as aLEVEL-NODE pair, whereLEVEL is equal to
the length of the pattern minus one, andNODE is a unique number associated with that pattern of that particular
LEVEL. The NODE-numbers range from zero to the number of patterns of that LEVEL minus one. The pattern’s
PATTERNID is used to relate the frequent pattern with records in other output files produced byLPMiner. FREQis
the number of supporting sequences andSUPPis the same value in percentage.PATTERNis the frequent pattern in
the same format as the input transaction file. All the items in each itemset ofPATTERNis sorted so that integers come
first arranged by the numerical ordering, and then non-integer strings follow arranged by the lexicographic ordering.
Figures 5(b) and 5(d) shows two examples of frequent pattern files produced byLPMiner.

2.2.2 PC-List File

A parent-children list (PC-list) represents parent-children relationships among the patterns and can be used to construct
the lattice of frequent patterns. The precise meaning of what constitutes thechildren patterns of a particularparent
pattern depends on whether or not the patterns where discovered using a constant or a length-decreasing support
constraint. If constant support was used, then for each parent pattern of sizek, its children patterns correspond to all
of its sub-patterns of sizek − 1. However, if a length decreasing support constraint was used, then for each parent

6

2−2 2−32−0 2−1

0−0 0−1 0−2 0−3 0−4

1−11−0 1−2 1−3 1−5 1−61−4 1−7

3−0

null

3−0 2−1 2−0 2−3 2−2
2−0 1−7 1−2 1−1
2−1 1−7 1−4 1−3
2−2 1−3 1−1 1−5
1−0 0−1 0−0
1−1 0−3 0−0
1−2 0−4 0−0
1−3 0−3 0−2
1−4 0−4 0−2
1−5 0−2 0−0
1−6 0−3 0−0
1−7 0−4 0−3
0−0
0−1
0−2
0−3
0−4

(a) An example PC−list (b) It’s corresponding pattern lattice

Figure 3: PC-lists and Pattern Lattices.

pattern of sizek, its children patterns correspond to all of its maximal frequent sub-patterns of length less thank.
Note that this distinction is due to the fact than not all patterns in the traditional itemset lattice will satisfy the given
length-decreasing support constraint.

The format of the PC-list file (*.pc) is as follows. It contains as many lines as the number of frequent patterns, and
for each parent pattern it lists its children patterns in the following format:

<PARENTPATTERNID> <CHILD PATTERNID 0> <CHILD PATTERNID 1> . . .

Both <PARENTPATTERNID> and<CHILD PATTERNID X> are in theLEVEL-NODE form described in Sec-
tion 2.2.1, and represent the patterns that were discovered by the algorithm.

Figure 3(a) shows an example of PC-list file. In this example, the patterns were generated using a constant minimum
support and for this reason the PC-list can be used to create the frequent itemset lattice shown in Figure 3(b).

2.3 Examples

Figure 4 shows an example of usingLPMiner. In this example,LPMiner is given an input transaction fileTranFile
shown in Figure 5(a). This transaction file has a total of 10 transactions. The “-s” option is used to set the constant
minimum support to 50%. Thus, the output frequent pattern fileTranFile.fp shown in Figure 5(b) contains
frequent patterns that are supported by at least 10× 50/100= 5 transactions. For example, frequent pattern{1 2 4 }
has 6 supporting transactions–a support value of 60.0%. The first field in each one of the lines in the frequent pattern
file, e.g., 2-0 , indicates the PATTERNID of the pattern shown on that line.

In Figure 4, the “-p” option was used to generate a PC-list file. Figure 5(c) shows the PC-list fileTranFile.pc .
Each line of the PC-list file has the PATTERNID of the parent pattern followed by a set of PATTERNIDs corre-
sponding to its children patterns. For example, pattern{2 4} with PATTERN ID 1-3 has children patterns{2} and
{4} that have PATTERNIDs {0-6 } and{0-4 }, respectively. This parent-children relationship is shown in the fifth
line of Figure 5(c). Pattern{2 4} is also a child of pattern{1 2 4 } with PATTERN ID {2-0 }. The first line of
Figure 5(c) shows this relationship.

If LPMiner is given maximal pattern option “-x”, all the non-maximal frequent patterns are eliminated from fre-
quent patterns in Figure 5(b). Figure 5(d) shows the resulting frequent pattern file.

7

�

�

�

�

prompt% lpminer -s 50.0 -p TranFile
**
lpminer (PAFI 1.0) Copyright 2003, Regents of the University of Minnesota

Transaction File Information ---
Transaction File Name: TranFile
Number of Input Transactions: 10
Number of Distinct Items: 21
Average Number of Items In a Tran: 8.800
Maximum Number of Items In a Tran: 12

Options --
Minimum Output Pattern Size: 0
Maximum Output Pattern Size: 4294967295
Constant Minimum Support: 50.000000
PC List File Generation: Generate
Non-Maximal Frequent Pattern Pruning: Skip

Solution ---
Frequent Pattern File: TranFile.fp
PC List File: TranFile.pc
Number of Frequent Patterns: 14
Number of Frequent Patterns[Length 1] 7
Number of Frequent Patterns[Length 2] 6
Number of Frequent Patterns[Length 3] 1

Timing Information ---
Input File Transformation: 0.006 sec
Generating Frequent Pattern File: 0.006 sec
Generating PC List File: 0.005 sec

**

Figure 4: Output of LPMiner

2−0 1−3 1−4 1−5
1−0 0−1 0−6
1−1 0−2 0−6
1−2 0−3 0−6
1−3 0−4 0−6
1−4 0−4 0−5
1−5 0−6 0−5
0−0
0−1
0−2
0−3
0−4
0−5
0−6

PC−List File
"TranFile.pc"

(c)

1 2 4 6 7 9 11
1 2 3 4 6 7 8 9 12 13 15 17
5 7 9 10 11 13 15 18
1 2 4 5 16 19 20
0 1 2 4 8 9 11 13 15
0 1 2 6 12 14 19
2 3 6 8 9 10 12 14 15 16 19
2 4 6 7 8 11 12 14 16 17
1 2 3 4 5 8 10 14 18
0 1 2 4 6 9 11 13

(a) Transaction File "TranFile"

0−0 5 50.000 11
0−1 5 50.000 8
0−2 6 60.000 9
0−3 6 60.000 6
0−4 7 70.000 4
0−5 7 70.000 1
0−6 9 90.000 2
1−0 5 50.000 2 8
1−1 5 50.000 2 9
1−2 6 60.000 2 6
1−3 7 70.000 2 4
1−4 6 60.000 1 4
1−5 7 70.000 1 2
2−0 6 60.000 1 2 4

Frequent Pattern
File "TranFile.fp"

(b)

0−0 5 50.000 11
1−0 5 50.000 2 8
1−1 5 50.000 2 9
1−2 6 60.000 2 6
2−0 6 60.000 1 2 4

Maximal Pattern
File "TranFile.fp "

(d)

Figure 5: Examples of the Input/Output files used/produced by LPMiner.

8

3 The SLPMiner Program

USAGE

SLPMiner [optional parameters] SequentialTranFile

DESCRIPTION

Used to find all frequent sequential patterns satisfying a constant or length-decreasing support constraint from a
sequential transaction file.

REQUIRED PARAMETERS

SequentialTranFile
The name of the file that stores the input sequential transactions from which frequent sequential
patterns are to be found. The format of the sequential transaction file is described in Section 3.1.1.

OPTIONAL PARAMETERS

-s FLOAT, --support=FLOAT
This parameter sets the constant minimum support in percentage. This value must be in the range
of [0.0, 100.0]. The default value is 5.0%. Note that if the minimum support is set to 0.0, all the
frequent patterns with at least one supporting transaction are output. If-S string option is specified,
-s float option is ignored.

-S FILE, --supptable=FILE
This parameter specifies the file that stores the length-decreasing support constraint. The format of
this file is described in Section 3.1.2. This parameter hides-s float option.

-m INT, --minsize=INT
This parameter sets the minimum length of frequent patterns to be output. The default value is one.
If this parameter is set to a value greater than one, the amount of time required to find the frequent
patterns will be decreased.

-M INT, --maxsize=INT
This parameter sets the maximum length of frequent patterns to be output. The default value is
4,294,967,295 (0xffffffff). If this parameter is set to a smaller value, then the amount of time taken
for finding frequent patterns may be decreased.

-x, --maximal
Generates maximal frequent patterns only. The current version ofSLPMiner does not contain any
optimizations to actually reduce the amount of time required to find maximal patterns, and this
parameter is used solely to limit the amount of information that is being output.

-t, --tid-list
Generates a file that stores for each pattern, the IDs of the input sequential transactions that supports
it. These lists are referred to as TID-lists.

The TID-lists are stored in a file, which has the same name as the input file with file extension “.tid”
added. The format of the TID-list file is described in Section 3.2.3.

-p, --parent-children-list
Generates a file that shows the parent-children relationships among frequent patterns. These rela-
tionships are referred to asPC-list. For each frequent pattern,p, its PC-list contains all frequent
patternsc, such thatc is a maximal frequent sub-pattern ofp. Note that whenSLPMiner is used
with a constant support constraint, the PC-lists correspond to the frequent pattern lattice.

The PC-lists are stored in a file, which has the same name as the input file with file extension “.pc”
added. The format of the PC-list file is described in Section 3.2.2.

-b INT, --bufsize=INT
This parameter sets the size of the internal I/O buffer in megabytes. The default value is 50. The
performance ofSLPMiner can be improved by increasing the size of the buffer. The buffer size must
be at least as large as the longest sequence in the internal binary format. This value can be calculated

9

in terms of the maximum number of itemsets in a sequence,m, and the maximum number of items
in a sequence,n, using the following formula:

20+ 4n + 4m

1000× 1000
MB

This value is also obtained from the log file ofSLPMiner.
-d PATH, --dir=PATH

This parameter sets the directory to be used for storing intermediate *.lf.N files (described in Sec-
tion 5). The default value is the directory where the program is invoked. These files are generated
during the execution ofSLPMiner and are deleted upon successful execution. The performance of
SLPMiner can be improved by providing a path on a disk that is attached locally on the machine
thatSLPMiner runs (i.e., you should not be using a network mounted disk).

-h, --help
Displays a short summary of the various options to the standard output.

OUTPUT

The discovered frequent patterns are stored in a file that has the same name as the input file with file extension
“.fp” added. The format of this frequent pattern file is described in Section 3.2.1.

The SLPMiner program also generates a log-file calledslpminer.log , which stores various statistics re-
garding the input file, the discovered frequent patterns, and the amount of time taken during the various stages
of the computation. The same information is also printed on the standard output.

NOTE

The SLPMiner program uses a disk-based implementation and can scale to very large datasets. The primary
constraint on the size of the datasets that it can process is the amount of free disk-space that is available for
storing intermediate data files.

3.1 Input File Formats

SLPMiner takes as input two different files. The first is theSequentialTranFile that contains the sequential transactions
from which the frequent patterns will be discovered, and the second file is the length-decreasing support constraint
file (SuppFile) that indicates the different minimum support values associated with each pattern length. Note that the
SuppFile is optional and is used only when the-S is specified. The format of these files is described in the rest of this
section.

3.1.1 Sequential Transaction File

A sequential transaction file is an ASCII file in which each line represents a sequential transaction. A sequential
transaction is represented as an ordered list of itemsets separated by-1 . Each item can be any string except -1, which
is the itemset separator. There are no restrictions on how the items are ordered within each itemset. Figure 6 shows
some examples of different sequential transaction files.

If a line contains nothing except spaces or tabs, the line is ignored and it is not counted when determining the total
number of transactions. Also, if an itemset contains duplicate items, then the duplicate occurrences of an item within
that itemset are ignored. Ordering of the items within each itemset does not affect the arrangement of items in frequent
pattern files generated bySLPMiner.

3.1.2 Length-Decreasing Support Constraint File

The format of the length-decreasing support constraint file is identical to that used byLPMiner and was described in
Section 2.1.2. The only difference is that since a sequential pattern consists of a sequence of itemsets, itslength is
equal to the total number of items in all of its itemsets.

10

1 2 −1 7 9 11 −1 7 8 9 −1 1 9 13 17
1 3 −1 1 2 6 7 8 9 −1 12 13 17
9 −1 10 13 15 18 −1 5 9 −1 11 15 18
1 2 4 5 −1 7 19 −1 1 2 4 −1 6 7 9 11
0 1 4 −1 9 11 13 −1 15
0 1 2 6 7 14 19 −1 2 −1 8 9 12 −1 16 19
1 2 3 −1 7 8 −1 6 9 10 12 −1 16 19
2 4 6 7 8 −1 11 12 14 16 17 −1 0 1 6 9 11 13
1 2 4 −1 0 7 8 −1 11 14 2 −1 8 −1 14 18
0 1 2 4 6 9 10 13

(a)

pear −1 peach pear
apple orange −1 apple pear −1 pear
apple orange peach −1 orange
melon orange peach −1 orange

(b)

Figure 6: Examples of sequential transaction files accepted by SLPMiner. Note that the items can be arbitrary strings.

3.2 Output File Formats

Upon successful execution,SLPMiner outputs the discovered patterns into a file called thefrequent pattern file. If
the -x option has been specified, then this file contains only the maximal patterns, otherwise it contains all patterns
that satisfy the minimum support constraint(s). In addition, if the user has specified the-p option,SLPMiner will
generate thePC-list file that contains the parent-children relationships among frequent patterns. Similarly, if the user
has specified the-t option,SLPMiner will generate theTID-list file that shows the sequential transactions that are
supported by each pattern. The format of these files is described in the rest of this section.

3.2.1 Frequent Pattern File

The format of the frequent pattern file is identical to that used byLPMiner and was described in Section 2.2.1.

3.2.2 PC-List File

The format of the PC-list file is identical to that used byLPMiner and was described in Section 2.2.2.

3.2.3 TID List File

For each frequent pattern, theTID-list file (*.tid) shows the set of sequential transactions that support it (i.e., the set
of sequential transactions that contain the pattern). Note that “TID” stands fortransaction identifier. Each line of a
TID-list file shows the list of supporting transactions for a discovered frequent pattern. The format of each line is the
following:

<PATTERNID> <TID 0> <TID 1> . . .

<PATTERNID> is the ID of a frequent pattern and the remaining<TID x> entries are the list of the supporting
transactions separated by white spaces. The format of<PATTERNID> is in theLEVEL-NODE form described in
Section 2.2.1. The supporting transaction IDs<TID x> are non-negative integers and correspond to the order that
these transactions appeared in the input file. The first transaction’s ID in the input file is 0, the second transaction’s ID
is 1 and so on. TIDs in each TID-list are sorted in ascending order of TID value. Figure 8(d) shows an example of a
TID-list file.

3.3 Examples

Figure 7 shows an example of usingSLPMiner. In this example,SLPMiner is given an input sequential transaction
file SeqTranFile shown in Figure 8(a). This file has a total of 10 sequential transactions. In each sequence, itemsets
are separated by “-1”. The “-S” option is used to specify the length-decreasing support constraint specified in filefunc
shown in Figure 8(b). Each line infunc specifies the minimum support for patterns with a length. For example, the
first line in func sets the minimum support of frequent patterns with length 1 to 80%. As for the patterns with length
more than 4, the minimum support of length 4 is applied. The output frequent pattern fileSeqTranFile.fp shown
in Figure 8(c) contains frequent patterns that are supported by at least 10× 50/100= 5 sequential transactions.

11

�

�

�

�

prompt% slpminer -S func -t SeqTranFile
**
slpminer (PAFI 1.0) Copyright 2003, Regents of the University of Minnesota

Sequential Transaction File Information --
Sequential Transaction File Name: SeqTranFile
Number of Input Transactions: 10
Number of Distinct Items: 20
Average Number of Items In a Tran: 11.200
Average Number of Itemsets In a Tran: 3.500
Average Number of Items In an Itemset: 3.200
Maximum Number of Items In a Tran: 15
Maximum Number of Itemsets In a Tran: 5
Maximum Binary Transaction Size: 92 Bytes

Options --
Buffer Size: 50.000000 MB
Temporary File Directory: Current Directory
Minimum Output Pattern Size: 1
Maximum Output Pattern Size: 4294967295
Length-Decreasing Support Constraint File: func
PC List File Generation: Skip
TID List File Generation: Generate
Non-Maximal Frequent Pattern Pruning: Skip

Solution ---
Frequent Pattern File: SeqTranFile.fp
TID List File: SeqTranFile.tid
Number of Frequent Patterns: 11
Size of Projected Databases: 0.007388 MB
Number of Frequent Patterns[Length 1] 3
Number of Frequent Patterns[Length 2] 2
Number of Frequent Patterns[Length 3] 4
Number of Frequent Patterns[Length 4] 2

Timing Information ---
Input File Transformation: 0.006 sec
Generating Frequent Pattern File: 0.107 sec

**

Figure 7: Output of SLPMiner

The TID-list option “-t” is used to generate the TID-list fileSeqTranFile.tid that is shown in Figure 8(d).
Each line corresponds to a frequent pattern and starts from the PATTERNID of the frequent pattern, followed by its
TID list. For example, pattern{1 -1 7 8 } has a PATTERNID 2-0 and is supported by the first, second, seventh,
and eighth transactions inSeqTranFile . Thus, the TID-list of pattern2-0 is {0 1 6 8 } (TID numbers start from
0).

1 2 −1 7 9 11 −1 7 8 9 −1 1 9 13 17
1 3 −1 1 2 6 7 8 9 −1 12 13 17
9 −1 10 13 15 18 −1 5 9 −1 11 15 18
1 2 4 5 −1 7 19 −1 1 2 4 −1 6 7 9 11
0 1 4 −1 9 11 13 −1 15
0 1 2 6 7 14 19 −1 2 −1 8 9 12 −1 16 19
1 2 3 −1 7 8 −1 6 9 10 12 −1 16 19
2 4 6 7 8 −1 11 12 14 16 17 −1 0 1 6 9 11 13
1 2 4 −1 0 7 8 −1 11 14 2 −1 8 −1 14 18
0 1 2 4 6 9 10 13

(a) Sequential Transaction File "SeqTranFile"

1 80.0
2 60.0
3 40.0
4 30.0

Length Decreasing
Support File

(b)

0−0 9 90.000 1
0−1 8 80.000 2
0−2 9 90.000 9
1−0 6 60.000 1 −1 9
1−1 7 70.000 1 2
2−0 4 40.000 1 −1 7 8
2−1 4 40.000 1 2 −1 7
2−2 4 40.000 1 2 −1 9
2−3 4 40.000 1 2 −1 8
3−0 3 30.000 1 2 −1 7 −1 9
3−1 3 30.000 1 2 −1 7 8

Frequent Pattern File
"SeqTranFile.fp"

(c)

0−0 0 1 3 4 5 6 7 8 9
0−1 0 1 3 5 6 7 8 9
0−2 0 1 2 3 4 5 6 7 9
1−0 0 1 3 4 5 6
1−1 0 1 3 5 6 8 9
2−0 0 1 6 8
2−1 0 3 6 8
2−2 0 5 6 8
2−3 0 3 5 6
3−0 0 3 6
3−1 0 6 8

TID−List File
"SeqTranFile.tid"

(d)

Figure 8: Examples of the Input/Output files used/produced by SLPMiner.

12

4 The FSG Program

USAGE

fsg [optional parameters] GraphTranFile

DESCRIPTION

Finds all frequent connected undirected subgraphs satisfying a given minimum support threshold constraint.

REQUIRED PARAMETER

GraphTranFile
The name of the file that stores the input graph transactions from which frequent connected subgraphs
are to be found. The format of the graph transaction file is described in Section 4.1.1.

OPTIONAL PARAMETERS

-s FLOAT, --support=FLOAT
This parameter sets the minimum support in percentile. This value must be in the range of(0.0, 100.0].
The default value is 5.0%. Note that if the minimum support is set to 0.0, all the frequent subgraphs
with at least one supporting transaction are generated.

-m INT, --minsize=INT
This parameter sets the minimum size of frequent connected subgraphs to be generated. The size
of a frequent subgraph is the total number of edges in it. For example, the sizes of a triangle and a
square are three and four respectively. The default value is one.

-M INT, --maxsize=INT
This parameter sets the maximum size of frequent connected subgraphs to be generated. The default
value is equal to INTMAX defined in<limit.h> and 2,147,483,647 on typical 32-bit systems. If
this parameter is set to a small value, the program will stop after finding all the frequent subgraphs
of the specified size.

-x, --maximal
Generates only maximal frequent subgraphs. Because the current version ofFSG does not contain
any optimizations for getting the maximal patterns only, note that this option does not reduce the
running time.

-t, --tid-list
Generates a file with the suffix “.tid” which contains the lists of supporting transaction IDs for each
frequent subgraph discovered. These lists are referred to asTID-lists. The format of the TID-list file
is described in Section 4.2.3.

-p, --parent-children-list
Generates a file that shows the parent-children relationships among frequent patterns. These rela-
tionships are referred to asPC-list. For each frequent pattern,p, its PC-list contains all frequent
patternsc, such thatc is a maximal frequent sub-pattern ofp.

The PC-lists are stored in a file, which has the same name as the input file with file extension “.pc”
added. The format of the PC-list file is described in Section 4.2.2.

-h, --help
Displays a short summary of the options to the standard output.

OUTPUT

The discovered frequent connected subgraphs are stored in a file with the same basename as the input file and
with the suffix “.fp”. The format of this frequent pattern file is described in Section 4.2.1.

NOTE

FSG is implemented as in-memory program. The size of the datasets that can be processed are limited by the
amount of physical memory in your system.

13

4.1 Input File Format

FSG takes as input theGraphTranFile that contains the graph transactions from which the frequent patterns will be
discovered. Basically this format is a simplified version of SUBDUE [2] graph file format. The detail of the format is
described in the rest of this section.

4.1.1 Graph Transaction File

A graph transaction file is an ASCII file that contain a set of graph transactions. Each graph transaction begins with
the transaction line which starts with the letter “t ”. Next, a set of vertex lines follows. Then, a set of edge lines comes.
There are only four types of lines including comments which are shown in Table 1. Vertex IDs are non-negative
integers assigned in the increasing order sequentially from zero. If a graph hasN vertices, there should beN vertex
lines whose “<ID> ” is from 0 to N − 1. If a graph hasM edges, there should beM lines in total each of which
contains a pair of vertex IDs as its endpoints.

Line type Format Explanation
Comment # ... Everything ignored after “#”
Transaction t The beginning of a transaction
Vertex v <ID> <LABEL> A vertex ID<ID> and its vertex label<LABEL>

<ID> a non-negative integer,<LABEL> a string without spaces
Edge u <ID1> <ID2> <LABEL> Endpoints<ID1> and<ID2> , and its edge label<LABEL>

<ID1> , <ID2> vertex IDs,<ID1> < <ID2>
<LABEL> a string without spaces

Table 1: Format of the graph transaction file

Figure 9 shows a graph of four vertices and five edges. Edges are unlabeled (i.e., all edges have the same label “E”)
and vertex labels are either “black ” or “ white ”. Figure 10 shows the corresponding graph transaction. Note that
vertex and edge lines must be sorted in the ascending order based on the vertex IDs and each edge appears only once
because “<ID1> ” must be smaller than “<ID2> ” in the edge line.

0

213

white

blackwhitewhite

Figure 9: Sample graph

t # 4 vertices and 5 edges
v 0 white
v 1 white
v 2 black
v 3 white
u 0 1 E
u 0 2 E
u 0 3 E
u 1 2 E
u 1 3 E

Figure 10: Sample graph transaction

4.2 Output File Formats

Upon successful execution,FSG outputs the discovered patterns into a file called thefrequent pattern file. If the
-x option has been specified, then this file contains only the maximal patterns, otherwise it contains all patterns that
satisfy the minimum support constraint. In addition, if the user has specified the-p option,FSG will generate the
PC-list file that contains the parent-children relationships among frequent patterns. Similarly, if the user has specified
the-t option,FSG will generate theTID-list file that shows the graph transactions that are supported by each pattern.
The format of these files is described in the rest of this section.

14

4.2.1 Frequent Pattern File

The format of the frequent-pattern file (*.fp) thatFSG uses to output the patterns that it discovered is similar to that
used for specifying the input graph transactions (described in Section 4.1.1). This is becauseFSG’s output is a set of
frequent subgraphs which can also be regarded as a set of graphs.

The only format difference is that the frequent-pattern file contains additional information about the different pat-
terns such as their pattern ID and their frequencies. This information appear as comments in each “Transaction” line
(i.e., the line starts with “t ”). The exact format of the “Transaction” line of the frequent-pattern file and its meaning
is shown in Table 2.

Line type Format Explanation
Transaction t # <PATTERN ID>, <COUNT> The beginning of a transaction, i.e., a frequent subgraph.

<PATTERNID> is the identifier assigned to the subgraph. This identifier
is in a similarLEVEL-NODE format as that used byLPMiner andSLP-
Miner. However, in the case ofFSG, LEVEL corresponds to the number
of edges in the frequent subgraph. The same ID is used by the PC-List
and TID-List files.
<COUNT>shows the total number of transactions which contain at least
one instance of the frequent subgraph. Naturally this count should be
greater or equal to the support threshold specified by a user.

Table 2: Format of the “Transaction” line of the frequent-pattern file.

4.2.2 PC-List File

The format of the PC-list file is identical to that used byLPMiner and was described in Section 2.2.2.
Figure 11 shows a frequent subgraph of size 5 as well as its 5 subgraphs of size 4. Note that there are five ways to

obtain size-4 subgraphs from this size-5 subgraph by removing each edge, only three are distinct in terms of isomor-
phism. The corresponding line in the PC-list file becomes “5-0 4-0 4-1 4-2” showing that the subgraph 5-0 contains
the three distinct subgraphs 4-0, 4-1 and 4-2.

0

13 2

0

13

0

13

0

13

0

13

0

13 2

2 2 2

2

5−0

4−0 4−1 4−2

4−0 4−2

Figure 11: Sample subgraph of size 5 and its children of size 4

5-0 4-0 4-1 4-2

Figure 12: The corresponding line in the PC-list file

4.2.3 TID-List File

The format of the TID-list file is identical to that used bySLPMiner and was described in Section 3.2.3.

4.3 Examples

Figure 13 shows the execution ofFSG at the command line and its output to the standard output. The input file is
named “test.g” which is shown in Figure 14. The discovered frequent patterns are stored in the file named “test.fp”

15

�

�

�

�

user@machine:˜ 1 $./fsg -s 100.0 -pt test.g

fsg 1.34 (PAFI 1.0) Copyright 2003, Regents of the University of Minnesota

Transaction File Information --------------------------
Transaction File Name: test.g
Number of Input Transactions: 2
Number of Distinct Edge Labels: 1
Number of Distinct Vertex Labels: 2
Average Number of Edges In a Transaction: 4
Average Number of Vertices In a Transaction: 4
Max Number of Edges In a Transaction: 6
Max Number of Vertices In a Transaction: 4

Options ---
Min Output Pattern Size: 1
Max Output Pattern Size: 2147483647(INT_MAX)
Min Support Threshold: 100.0% (2 transactions)
Generate Only Maximal Patterns: No
Generate PC-List: Yes
Generate TID-List: Yes

Outputs ---
Frequent Pattern File: test.fp
PC-List File: test.pc
TID-List File: test.tid

Number of Size-1 Frequent Patterns: 1
Number of Size-2 Frequent Patterns: 1
Number of Size-3 Candidates: 3
Number of Size-3 Frequent Patterns: 1

Largest Frequent Pattern Size: 3
Total Number of Candidates Generated: 3
Total Number of Frequent Patterns Found: 3

Timing Information ------------------------------------
Elapsed User CPU Time: 0.0[sec]

Figure 13: Execution of FSG

and is shown in Figure 17. Note that besides the actual discovered subgraphs, the frequent pattern file also contains
a log of the run as comment fields. The options “-p” and “-t” are used each of which specifies to generate the files
“test.pc” and “test.tid” respectively. The contents of the two files are shown in Figures 15 and 16.

t # triangle
v 0 V
v 1 V
v 2 V
u 0 1 E
u 0 2 E
u 1 2 E
t # K4
v 0 V
v 1 V
v 2 V
v 3 W
u 0 1 E
u 0 2 E
u 0 3 E
u 1 2 E
u 1 3 E
u 2 3 E

Figure 14: Graph Transaction File test.g

1-0
2-0 1-0
3-0 2-0

Figure 15: PC-List File test.pc

1-0 0 1
2-0 0 1
3-0 0 1

Figure 16: PC-List File test.tid

16

fsg 1.34 (PAFI 1.0) Copyright 2003, Regents of the University of Minnesota
#
Transaction File Information --------------------------
Transaction File Name: test.g
Number of Input Transactions: 2
Number of Distinct Edge Labels: 1
Number of Distinct Vertex Labels: 2
Average Number of Edges In a Transaction: 4
Average Number of Vertices In a Transaction: 4
Max Number of Edges In a Transaction: 6
Max Number of Vertices In a Transaction: 4
#
Options ---
Min Output Pattern Size: 1
Max Output Pattern Size: 2147483647(INT_MAX)
Min Support Threshold: 100.0\% (2 transactions)
Generate Only Maximal Patterns: Yes
Generate PC-List: Yes
Generate TID-List: Yes
#
Outputs ---
Frequent Pattern File: test.fp
PC-List File: test.pc
TID-List File: test.tid
#
t # 1-0, 2
v 0 V
v 1 V
u 0 1 E
t # 2-0, 2
v 0 V
v 1 V
v 2 V
u 0 1 E
u 0 2 E
t # 3-0, 2
v 0 V
v 1 V
v 2 V
u 0 1 E
u 0 2 E
u 1 2 E
Number of Size-1 Frequent Patterns: 1
Number of Size-2 Frequent Patterns: 1
Number of Size-3 Candidates: 3
Number of Size-3 Frequent Patterns: 1
#
Largest Frequent Pattern Size: 3
Total Number of Candidates Generated: 3
Total Number of Frequent Patterns Found: 3
#
Timing Information ------------------------------------
Elapsed User CPU Time: 0.0[sec]

Figure 17: FP File test.fp

17

5 Filename Rules

PAFI’s stand-alone programs use a specific file extension for each file type as shown in Table 3. In the table, we assume
the input transaction, sequential transaction, or graph transaction file isTEST, but you can choose any file name. By
default,LPMiner, SLPMiner, andFSG generate those files in Table 3 on the directory where the input transaction
file resides. Only one exception is *.lf.N files that can be put in a directory of your choice. This is because these
files are accessed so extensively that the I/O performance on these files affects the amount of time taken bySLPMiner
dramatically.

Note that if a file with the same name exists,LPMiner, SLPMiner, andFSG will overwrite it without asking you.
Therefore, it is safe to avoid putting files that have the same prefix as the input transaction file. Upon a successful
termination, all temporary files are deleted.

File Name Input/Output Description Option Program
TEST Input Item/Sequence/Graph Transaction file N/A LPMiner, SLPMiner, FSG
TEST.fp Output Frequent pattern file N/A LPMiner, SLPMiner, FSG
TEST.pc Output PC list file -p LPMiner, SLPMiner, FSG
TEST.tid Output TID list file -t SLPMiner, FSG
TEST.t conv Temporary Converted transaction file N/A LPMiner, SLPMiner
TEST.fp conv Temporary Converted frequent pattern file N/A LPMiner, SLPMiner
TEST.slp Temporary Binary transaction file N/A SLPMiner
TEST.lf. N Temporary Projected database file (N = 0, 1, 2, . . .) N/A SLPMiner

Table 3: Extensions of files derived from transaction file “TEST”.

6 System Requirements and Contact Information

PAFI is written in ANSI C and C++ and has been extensively tested under Linux and Solaris. At this pointPAFI’s
distribution is only in a binary format, as it is actively under development. However, we expect to make the source
code available in future releases.

Even though,PAFI contains no known bugs, it does not mean that all of its bugs have been found and fixed. If you
find any problems, please send email tokarypis@cs.umn.edu, with a brief description of the problem you have found.
Also, any future updates toPAFI will be made available on WWW athttp://www.cs.umn.edu/˜pafi.

7 Copyright Notice and Usage Terms

ThePAFI package is copyrighted by the Regents of the University of Minnesota. It can be freely used for educational
and research purposes by non-profit institutions and US government agencies only. Other organizations are allowed to
usePAFI only for evaluation purposes, and any further uses will require prior approval. The software may not be sold
or redistributed without prior approval. One may make copies of the software for their use provided that the copies,
are not sold or distributed, are used under the same terms and conditions.

As unestablished research software, this code is provided on an “as is” basis without warranty of any kind, either
expressed or implied. The downloading, or executing any part of this software constitutes an implicit agreement to
these terms. These terms and conditions are subject to change at any time without prior notice.

8 References

[1] Mukund Deshpande and George Karypis. Automated approaches for classifying structure. InProceedings of the
2nd ACM SIGKDD Workshop on Data Mining in Bioinformatics, 2002.

18

[2] L. Holder, D. Cook, and S. Djoko. Substructure discovery in the subdue system. InProceedings of the AAAI
Workshop on Knowledge Discovery in Databases, pages 169–180, 1994.

[3] Michihiro Kuramochi and George Karypis. Frequent subgraph discovery. InIEEE International Conference on
Data Mining, 2001. Also available as a UMN-CS technical report, TR# 01-028.

[4] Michihiro Kuramochi and George Karypis. An efficient algorithm for discovering frequent subgraphs.IEEE
Transactions on Knowledge and Data Engineering, (in press), 2003.

[5] Masakazu Seno and George Karypis. Lpminer: An algorithm for finding frequent itemsets using length-decreasing
support constraint. InIEEE International Conference on Data Mining, 2001. Also available as a UMN-CS
technical report, TR# 01-026.

[6] Masakazu Seno and George Karypis. Slpminer: An algorithm for finding frequent sequential patterns using
length-decreasing support constraint. InIEEE International Conference on Data Mining, 2002.

19

