PAFI *
A Pattern Finding Toolkit

Release 1.0.1
Masakazu Seno, Michihiro Kuramochi, and George Karypis

Department of Computer Science, University of Minnesota
Minneapolis, MN 55455
Technical Report Number: 03-029

{seno, kuram, karypj€cs.umn.edu

Last updated on July 7, 2003 at 12:57am

*PAFI is copyrighted by the regents of the University of Minnesota. This work was supported by NSF CCR-9972519, EIA-9986042, ACI-
9982274, ACI-0133464, and by Army High Performance Computing Research Center contract number DAAH04-95-C-0008. Related papers are
available via WWW at URLhttp://www.cs.umn.edu/"karypis . The namePAFI is derived from PAttern FInding toolkit.

Contents

1 [Introduction 3
2 TheLPMiner Program 4
21 InputFile Formats. e e 5
2.1.1 TransactionFile. e 5
2.1.2 Length-Decreasing Support ConstraintFile 5
2.2 OutputFile Formats e e e 6
2.2.1 FrequentPatternFile 6
222 PC-ListFile 6
2.3 Examples e 7
3 TheSLPMiner Program 9
3.1 InputFile Formats. e e e 10
3.1.1 Sequential TransactionFile 10
3.1.2 Length-Decreasing Support ConstraintFile 10
3.2 OutputFile Formats e e e 11
3.2.1 FrequentPatternFile 11
3.2.2 PC-ListFile 11
3.2.3 TIDListFile e 11
3.3 Examples e e 11
4 TheFSG Program 13
4.1 InputFile Format e 14
4.1.1 GraphTransactionFile e 14
4.2 OutputFile Formats e e 14
4.2.1 FrequentPatternFile e 15
4.2.2 PC-ListFile 15
423 TID-ListFile e 15
4.3 EXampleso e e 15
5 Filename Rules 18
6 System Requirementsand Contact Information 18
7 Copyright Notice and Usage Terms 18
8 References 18

1 Introduction

PAFI is a set of programs that can be used to find frequent patterns in large and diverse databases. The current release
of PAFI includes three different pattern discovery programs cdlleMiner, SLPMiner, andFSG. LPMiner finds

patterns corresponding to itemsets in a transaction database and is based on the algorithm descrig&dPivifzdr

finds patterns corresponding to sub-sequences in a sequential database and is based on the algorithm described in [6].
Finally, FSG finds patterns corresponding to connected undirected subgraphs in an undirected graph database and is
based on the algorithms described in [3, 4]. These programs can be used to mine a wide-range of datasets arising in
commercial, information retrieval, and scientific applications [1].

All three programs can be used to find patterns that satisfy a constant minimum support. Moreover, a key feature of
LPMiner andSLPMiner is that they can find long frequent patterns without finding a large number of short patterns
that are often useless. This is achieved by ukéngth-decreasing support constraints, where the minimum occurrence
frequency of a pattern is given as a non-increasing function of pattern length.

PAFI's pattern discovery programs usually provide three additional functionalities. First, all three programs can
generate maximal frequent patterns. A maximal frequent pattern is a frequent pattern that is not contained by any
other frequent patterns. Generally, the number of maximal frequent patterns is much smaller than the number of all
the frequent patterns, leading to higher readability of frequent pattern files. S&tdPliner andFSG can generate
transaction-1D lists (TID-lists) indicating which sequences or graph transactions support a particular frequent pattern.
Third, all three programs can generpgeent-children-lists (PC-lists) that can be used to construct the frequent pattern
lattice.

Outline of P AFI's Manual

PAFI’'s manual is organized as follows. Sections 2, 3, and 4 describe the command-line options of the different frequent
pattern discovery programs and the format of the input and output files that they require and generate. Section 5
describe the general filename rules associated with the various files gener&ed byrograms. Finally, Section 6
describes the system requirements forPael package and provides contact information.

2 The LPMiner Program

USAGE
LPMiner

DESCRIPTION

[optional parameters] TranFile

Used to find all frequent itemsets satisfying a constant or length-decreasing support constraint from a transaction

file.

REQUIRED PARAMETERS

TranFile

The name of the file that stores the input transactions from which frequent itemset patterns are to be
found. The format of the transaction file is described in Section 2.1.1.

OPTIONAL PARAMETERS
-s FLOAT, --support=FLCAT

-S FILE,

-m | NT,

-M | NT,

This parameter sets the constant minimum support in percentage. This value must be in the range
of [0.0, 100.0]. The default value is 5.0%. Note that if the minimum support is set to 0.0, all the
frequent patterns with at least one supporting transaction are outp8tstifng option is specified,
-s float option is ignored.

- -suppt abl e=FI LE
This parameter specifies the file that stores the length-decreasing support constraint. The format of
this file is described in Section 2.1.2. This parameter hidésat option.
--m nsi ze=I NT
This parameter sets the minimum length of frequent patterns to be output. The default value is one.
If this parameter is set to a value greater than one, the amount of time required to find the frequent
patterns will be decreased.
--maxsi ze=I NT
This parameter sets the maximum length of frequent patterns to be output. The default value is
4,294,967,295 (Cfffff). If this parameter is set to a smaller value, then the amount of time taken
for finding frequent patterns may be decreased.

-X, --maxinml

Generates maximal frequent patterns only. The current versiafPbfiner does not contain any
optimizations to actually reduce the amount of time required to find maximal patterns, and this
parameter is used solely to limit the amount of information that is being output.

-p, --parent-children-1list

Generates a file that shows the parent-children relationships among frequent patterns. These rela-
tionships are referred to &C-list. For each frequent patterp, its PC-list contains all frequent
patternsc, such that is a maximal frequent sub-pattern pf Note that whe.PMiner is used with

a constant support constraint, the PC-lists correspond to the frequent pattern lattice.

The PC-lists are stored in a file, which has the same name as the input file with file extension “.pc”
added. The format of the PC-list file is described in Section 2.2.2.

-h, --help

OuUTPUT

Displays a short summary of the various options to the standard output.

The discovered frequent patterns are stored in a file that has the same name as the input file with file extension
“.fp” added. The format of this frequent pattern file is described in Section 2.2.1.

TheLPMiner program also generates and prints various statistics regarding the input file, the discovered frequent
patterns, and the amount of time taken during the various stages of the computation. The same information is
also appended to a file callgmminer.log

NOTE
The LPMiner program uses an in-memory implementation. For this reason, the size of the datasets that can be
processed are limited by the amount of physical memory in your system. If that is not enough, you can use the
SLPMiner program to find frequent itemset patterns, as it is disk-based. However, the runt8heMfiner is
an order of magnitude higher tha®Miner.

2.1 Input File Formats

LPMiner takes as input two different files. The first is tiieanFile that contains the transactions from which the
frequent patterns will be discovered, and the second file is the length-decreasing support constippFike] that
indicates the different minimum support values associated with each pattern length. Note SuppHike is optional
and is used only when th& is specified. The format of these files is described in the rest of this section.

2.1.1 Transaction File

A transaction file is an ASCII file in which each line represents a transaction. A transaction is a set of items separated
by one or more spaces or tabs. Each item can be any string except -1. There are no restrictions on how the items are
ordered within each transaction. Figure 1 shows some examples of different transaction files.

12467911 apple orange pear melon
1234678912131517 orange pear
5791011131518 orange melon peach
12451619 20 apple orange grape melon
012489111315 (b)
0126121419
23689101214151619 item1 item3 item6 item4
2467811121416 17 item3 item6 item4 item1
123458101418 item3 item2 item7
0124691113 item1 item4 item7

(a) ()

Figure 1: Examples of transaction files accepted by LPMiner. Note that the items can be arbitrary strings.

If a line contains nothing except spaces or tabs, the line is ignored and it is not counted when determining the
total number of transactions. Also, if a line contains duplicate items, then the duplicate occurrences of an item are
ignored. Ordering of the items within each transaction does not affect the arrangement of items in frequent pattern
files generated biyPMiner.

2.1.2 Length-Decreasing Support Constraint File

A length decreasing support constraint is a non-increasing function of pattern ldrnigth,m = 1,2,...). The
length of a pattern is the number of items in the pattern. A pattern with lemgghfrequent if and only if its support is
at leastf (m)%. Thesupport of a pattern (in percentage) is defined asrh@f, wherem is the number of transactions
supporting the pattern andis the number of all the transaction in the input transaction file.

A length-decreasing support constraint is specified by an ASCII file. Each line of the file contains a pair of numbers
m and f (m) separated by one space. The numbas an integer greater or equal to one an@n) is a floating point
number(0.0 < f(m) < 1000) indicating the minimum support for patterns of lengthNote that it must always hold
that f (my) > f(my) for any two integersn; andms such thatm; < my. All lines must be sorted in the ascending
order ofm. The first line of the file must always specify the minimum supportnfioe= 1. Also, for patterns whose
length is greater than the largestvalue specified in the filenfnay), LPMiner finds these longer patterns using a
minimum support corresponding fo(Mmay).

Figure 2(a) shows an example of length-decreasing support constraint file. Given this length-decreasing support

15.0
25.0
35.0
445
545
64.5
74.0 150
84.0 445
94.0 74.0
(@ Anexample of (b) Shortened length—decreasing
length—decreasing support constraint file.

support constraint file.

Figure 2: Examples of length-decreasing support constraint files.

constraint file,LPMiner uses 4.0% as the minimum support for patterns of length greater than 9. If for a range of
pattern-lengths, the associated minimum support values are the same, then all but the first occurrence of the identical
supports can be omitted. For example, the length-decreasing support constraint file in Figure 2(a) can be shortened to
that shown in Figure 2(b).

In addition, you can specify more than 100.0fgsn) value. In that case, no frequent patterns with lemgthill be
generated. Another special case is when you specify OfQim$ value. In that casd,PMiner outputs every pattern
that is supported by at least one transaction.

2.2 Output File Formats

Upon successful executiohPMiner outputs the discovered patterns into a file calledftbguent pattern file. If the

-X option has been specified, then this file contains only the maximal patterns, otherwise it contains all patterns that
satisfy the minimum support constraint(s). In addition, if the user has specified thption,LPMiner will generate

an additional file called thBC-list file, that contains the parent-children relationships among frequent patterns. The
format of these files is described in the rest of this section.

2.2.1 Frequent Pattern File

The frequent-pattern file (*.fp) stores either the frequent or the maximal frequent patterns discoverdibgr.
The patterns in this file are sorted in increasing order of their pattern length. Each line has the following format:

PATTERNID FREQ SUPP PATTERN

PATTERNID is a unique identifier of the pattern and is given dsB&EL-NODE pair, whereLEVEL is equal to

the length of the pattern minus one, aN@DE is a unique number associated with that pattern of that particular
LEVEL. The NODE-numbers range from zero to the number of patterns of that LEVEL minus one. The pattern’s
PATTERNID is used to relate the frequent pattern with records in other output files produddRiMiper. FREQis

the number of supporting sequences &uPPis the same value in percentad@ATTERNS the frequent pattern in

the same format as the input transaction file. All the items in each itemB&f ERNs sorted so that integers come

first arranged by the numerical ordering, and then non-integer strings follow arranged by the lexicographic ordering.
Figures 5(b) and 5(d) shows two examples of frequent pattern files produdsRiMiper.

2.2.2 PC-List File

A parent-childrenlist (PC-list) represents parent-children relationships among the patterns and can be used to construct
the lattice of frequent patterns. The precise meaning of what constitutehitteen patterns of a particularparent

pattern depends on whether or not the patterns where discovered using a constant or a length-decreasing support
constraint. If constant support was used, then for each parent pattern &f g&ehildren patterns correspond to all

of its sub-patterns of sizk — 1. However, if a length decreasing support constraint was used, then for each parent

3-02-12-02-32-2
2-01-71-21-1
2-11-71-41-3
2-21-31-11-5 null
1-0 0-1 0-0
1-10-30-0
i‘g g‘g g‘g 0-0 0-1 0-2 0-3 0-4
1-50-20-0
1-6 0-3 0-0 1-0 1-1 1-2 1-31-4 1-5 1-61-7
1-70-40-3
0-0
0-1 2-0 2-1 2-2 2-3
0-2
s W
0-4 -
(a) An example PC-list (b) It's corresponding pattern lattice

Figure 3: PC-lists and Pattern Lattices.

pattern of sizek, its children patterns correspond to all of its maximal frequent sub-patterns of length leds than
Note that this distinction is due to the fact than not all patterns in the traditional itemset lattice will satisfy the given
length-decreasing support constraint.

The format of the PC-list file (*.pc) is as follows. It contains as many lines as the number of frequent patterns, and
for each parent pattern it lists its children patterns in the following format:

<PARENTPATTERNID> <CHILD _PATTERNID _0> <CHILD_PATTERNID 1> ...

Both <PARENTPATTERNID> and<CHILD_PATTERNID _X> are in theLEVEL-NODE form described in Sec-
tion 2.2.1, and represent the patterns that were discovered by the algorithm.

Figure 3(a) shows an example of PC-list file. In this example, the patterns were generated using a constant minimum
support and for this reason the PC-list can be used to create the frequent itemset lattice shown in Figure 3(b).

2.3 Examples

Figure 4 shows an example of usinBMiner. In this examplel PMiner is given an input transaction fileranFile
shown in Figure 5(a). This transaction file has a total of 10 transactions. The “-s” option is used to set the constant
minimum support to 50%. Thus, the output frequent patternTitnFile.fp shown in Figure 5(b) contains
frequent patterns that are supported by at least 50/100= 5 transactions. For example, frequent pat{drn2 4}
has 6 supporting transactions—a support value of 60.0%. The first field in each one of the lines in the frequent pattern
file, e.g., 2-0 , indicates the PATTERND of the pattern shown on that line.

In Figure 4, the “-p” option was used to generate a PC-list file. Figure 5(c) shows the PC-[IstfilEile.pc
Each line of the PC-list file has the PATTERD of the parent pattern followed by a set of PATTERNSs corre-
sponding to its children patterns. For example, patt@rit} with PATTERNLID 1-3 has children pattern®} and
{4} that have PATTERNDSs {0-6 } and{0-4 }, respectively. This parent-children relationship is shown in the fifth
line of Figure 5(c). Patterfi2 4} is also a child of patterfl 2 4} with PATTERNLID {2-0 }. The first line of
Figure 5(c) shows this relationship.

If LPMiner is given maximal pattern option “-x”, all the non-maximal frequent patterns are eliminated from fre-
guent patterns in Figure 5(b). Figure 5(d) shows the resulting frequent pattern file.

prompt% Ipminer -s 50.0 -p TranFile

Transaction File Information

Ipminer (PAFI 1.0) Copyright 2003, Regents of the University of Minnesota

Transaction File Name: TranFile
Number of Input Transactions: 10
Number of Distinct Items: 21
Average Number of Items In a Tran: 8.800
Maximum Number of Items In a Tran: 12
Options
Minimum Output Pattern Size: 0
Maximum Output Pattern Size: 4294967295
Constant Minimum Support: 50.000000
PC List File Generation: Generate
Non-Maximal Frequent Pattern Pruning: Skip
Solution
Frequent Pattern File: TranFile.fp
PC List File: TranFile.pc
Number of Frequent Patterns: 14
Number of Frequent Patterns[Length 1] 7
Number of Frequent Patterns[Length 2] 6
Number of Frequent Patterns[Length 3] 1
Timing Information
Input File Transformation: 0.006 sec
Generating Frequent Pattern File: 0.006 sec
0.005 sec

K Generating PC List File:

12467911
1234678912131517
5791011131518
1245161920
012489111315
0126121419
23689101214151619
2467811121416 17
123458101418
0124691113

Figure 4: Output of LPMiner

0-0550.000 11 -01-31-4
0-1550.000 8 -00-10-6
0-2 6 60.000 9 -10-20-6
0-3 6 60.000 6 -20-30-6
0-4770.000 4 -30-40-6
0-5770.000 1 -4 0-40-5
0-6990.000 2 -50-60-5

1-0550.000 2 8
1-1550.00029
1-2660.000 2 6
1-3770.000 2 4
1-4660.000 1 4
1-5770.0001 2
2-0660.000124

OOOOOO?D—‘D—‘D—‘D—‘I—‘I—‘N
ONAWNRFRPOUBRMWNE OO

i
]

0-0550.000 11
1-0550.00028
1-1550.00029
1-2660.0002 6
2-0660.000124

(a) Transaction File "TranFile"

(b) Frequent Pattern
File "TranFile.fp"

(c) PC-List File
"TranFile.pc"

(d) Maximal Pattern
File "TranFile.fp "

Figure 5: Examples of the Input/Output files used/produced by LPMiner.

3 The SLPMiner Program

USAGE
SLPMiner [optional parameters] Sequential TranFile

DESCRIPTION
Used to find all frequent sequential patterns satisfying a constant or length-decreasing support constraint from a
sequential transaction file.

REQUIRED PARAMETERS

Sequential TranFile
The name of the file that stores the input sequential transactions from which frequent sequential
patterns are to be found. The format of the sequential transaction file is described in Section 3.1.1.

OPTIONAL PARAMETERS

-s FLOAT, --support=FLOAT
This parameter sets the constant minimum support in percentage. This value must be in the range
of [0.0, 100.0]. The default value is 5.0%. Note that if the minimum support is set to 0.0, all the
frequent patterns with at least one supporting transaction are outp8tstifng option is specified,
-s float option is ignored.

-S FILE, --supptable=FILE
This parameter specifies the file that stores the length-decreasing support constraint. The format of
this file is described in Section 3.1.2. This parameter hidéeat option.

-m | NT, --mnsize=INT
This parameter sets the minimum length of frequent patterns to be output. The default value is one.
If this parameter is set to a value greater than one, the amount of time required to find the frequent
patterns will be decreased.

-M I NT, --nmaxsize=INT
This parameter sets the maximum length of frequent patterns to be output. The default value is
4,294,967,295 (Cfffff). If this parameter is set to a smaller value, then the amount of time taken
for finding frequent patterns may be decreased.

-X, ~--maximal
Generates maximal frequent patterns only. The current versi@.BMiner does not contain any
optimizations to actually reduce the amount of time required to find maximal patterns, and this
parameter is used solely to limit the amount of information that is being output.

-t, --tid-list
Generates a file that stores for each pattern, the IDs of the input sequential transactions that supports
it. These lists are referred to as TID-lists.

The TID-lists are stored in a file, which has the same name as the input file with file extension “.tid”
added. The format of the TID-list file is described in Section 3.2.3.

-p, --parent-children-1list
Generates a file that shows the parent-children relationships among frequent patterns. These rela-
tionships are referred to &8C-list. For each frequent patterip, its PC-list contains all frequent
patternsc, such that is a maximal frequent sub-pattern pf Note that wherSLPMiner is used
with a constant support constraint, the PC-lists correspond to the frequent pattern lattice.

The PC-lists are stored in a file, which has the same name as the input file with file extension “.pc”
added. The format of the PC-list file is described in Section 3.2.2.

-b I NT, --bufsize=INT
This parameter sets the size of the internal 1/0 buffer in megabytes. The default value is 50. The
performance oELPMiner can be improved by increasing the size of the buffer. The buffer size must
be at least as large as the longest sequence in the internal binary format. This value can be calculated

in terms of the maximum number of itemsets in a sequemc@nd the maximum number of items
in a sequencea), using the following formula:

20+ 4n + 4m
1000x 1000

This value is also obtained from the log file BEPMiner.

-d PATH, --dir=PATH
This parameter sets the directory to be used for storing intermediatd filés (described in Sec-
tion 5). The default value is the directory where the program is invoked. These files are generated
during the execution oc5LPMiner and are deleted upon successful execution. The performance of
SLPMiner can be improved by providing a path on a disk that is attached locally on the machine
thatSLPMiner runs {.e., you should not be using a network mounted disk).

-h, --help
Displays a short summary of the various options to the standard output.

OuTPUT
The discovered frequent patterns are stored in a file that has the same name as the input file with file extension
“.fp” added. The format of this frequent pattern file is described in Section 3.2.1.

The SLPMiner program also generates a log-file calldgminer.log , which stores various statistics re-
garding the input file, the discovered frequent patterns, and the amount of time taken during the various stages
of the computation. The same information is also printed on the standard output.

NOTE
The SLPMiner program uses a disk-based implementation and can scale to very large datasets. The primary
constraint on the size of the datasets that it can process is the amount of free disk-space that is available for
storing intermediate data files.

3.1 Input File Formats

SLPMiner takes as input two different files. The first is tBaguential TranFilethat contains the sequential transactions

from which the frequent patterns will be discovered, and the second file is the length-decreasing support constraint
file (SuppFile) that indicates the different minimum support values associated with each pattern length. Note that the
SuppFileis optional and is used only when tHe is specified. The format of these files is described in the rest of this
section.

3.1.1 Sequential Transaction File

A sequential transaction file is an ASCII file in which each line represents a sequential transaction. A sequential
transaction is represented as an ordered list of itemsets separated Bgch item can be any string except -1, which

is the itemset separator. There are no restrictions on how the items are ordered within each itemset. Figure 6 shows
some examples of different sequential transaction files.

If a line contains nothing except spaces or tabs, the line is ignored and it is not counted when determining the total
number of transactions. Also, if an itemset contains duplicate items, then the duplicate occurrences of an item within
that itemset are ignored. Ordering of the items within each itemset does not affect the arrangement of items in frequent
pattern files generated 8L PMiner.

3.1.2 Length-Decreasing Support Constraint File

The format of the length-decreasing support constraint file is identical to that uddeMiyer and was described in
Section 2.1.2. The only difference is that since a sequential pattern consists of a sequence of iteriergts, igs
equal to the total number of items in all of its itemsets.

10

12-17911-1789-1191317
13-1126789-1121317

9-110131518-159-1111518 pear -1 peach pear
1245-1719-1124-167911 apple orange -1 apple pear -1 pear
014-191113-115 apple orange peach -1 orange
012671419-12-18912-11619 melon orange peach -1 orange
123-178-1691012-11619

24678-11112141617-101691113 (b)

124-1078-111142-18-11418
0124691013

(a)

Figure 6: Examples of sequential transaction files accepted by SLPMiner. Note that the items can be arbitrary strings.

3.2 Output File Formats

Upon successful executioBLPMiner outputs the discovered patterns into a file calledftbquent pattern file. If

the-x option has been specified, then this file contains only the maximal patterns, otherwise it contains all patterns
that satisfy the minimum support constraint(s). In addition, if the user has specifieg thption, SLPMiner will
generate th@C-list file that contains the parent-children relationships among frequent patterns. Similarly, if the user
has specified the option, SLPMiner will generate theTlD-list file that shows the sequential transactions that are
supported by each pattern. The format of these files is described in the rest of this section.

3.2.1 Frequent Pattern File

The format of the frequent pattern file is identical to that usetlPWiner and was described in Section 2.2.1.

3.2.2 PC-List File

The format of the PC-list file is identical to that usedltyMiner and was described in Section 2.2.2.

3.2.3 TID List File

For each frequent pattern, tiigD-list file (*.tid) shows the set of sequential transactions that suppareif the set

of sequential transactions that contain the pattern). Note that “TID” standsaftaction identifier. Each line of a
TID-list file shows the list of supporting transactions for a discovered frequent pattern. The format of each line is the
following:

<PATTERNID><TID 0><TID 1> ...

<PATTERNID> is the ID of a frequent pattern and the remain&iglD x> entries are the list of the supporting
transactions separated by white spaces. The formaP&TTERNID> is in the LEVEL-NODE form described in
Section 2.2.1. The supporting transaction KDAD x> are non-negative integers and correspond to the order that
these transactions appeared in the input file. The first transaction’s ID in the input file is 0, the second transaction’s ID
is 1 and so on. TIDs in each TID-list are sorted in ascending order of TID value. Figure 8(d) shows an example of a
TID-list file.

3.3 Examples

Figure 7 shows an example of usiBgPMiner. In this exampleSLPMiner is given an input sequential transaction

file SeqTranFile shown in Figure 8(a). This file has a total of 10 sequential transactions. In each sequence, itemsets
are separated by “-1”. The “-S” option is used to specify the length-decreasing support constraint specifiieohin file
shown in Figure 8(b). Each line fiunc specifies the minimum support for patterns with a length. For example, the
firstline infunc sets the minimum support of frequent patterns with length 1 to 80%. As for the patterns with length
more than 4, the minimum support of length 4 is applied. The output frequent patte3edjleanFile.fp shown

in Figure 8(c) contains frequent patterns that are supported by at leasb@Q.00 = 5 sequential transactions.

11

prompt% slpminer -S func -t SeqTranFile

Sequential Transaction File Information

slpminer (PAFI 1.0) Copyright 2003, Regents of the University of Minnesota

Temporary File Directory:

Sequential Transaction File Name: SeqTranFile
Number of Input Transactions: 10
Number of Distinct Items: 20
Average Number of Items In a Tran: 11.200
Average Number of Itemsets In a Tran: 3.500
Average Number of Items In an ltemset: 3.200
Maximum Number of Items In a Tran: 15
Maximum Number of Itemsets In a Tran: 5
Maximum Binary Transaction Size: 92 Bytes
Options
Buffer Size: 50.000000 MB

Current Directory

/

Minimum Output Pattern Size: 1
Maximum Output Pattern Size: 4294967295
Length-Decreasing Support Constraint File: func
PC List File Generation: Skip
TID List File Generation: Generate
Non-Maximal Frequent Pattern Pruning: Skip
Solution
Frequent Pattern File: SeqTranFile.fp
TID List File: SeqTranFile.tid
Number of Frequent Patterns: 11
Size of Projected Databases: 0.007388 MB
Number of Frequent Patterns[Length 1] 3
Number of Frequent Patterns[Length 2] 2
Number of Frequent Patterns[Length 3] 4
Number of Frequent Patterns[Length 4] 2
Timing Information
Input File Transformation: 0.006 sec
k Generating Frequent Pattern File: 0.107 sec
Figure 7: Output of SLPMiner

The TID-list option “-t” is used to generate the TID-list figeqTranFile.tid that is shown in Figure 8(d).
Each line corresponds to a frequent pattern and starts from the PATTBRRthe frequent pattern, followed by its
TID list. For example, patterfl -1 7 8 } has a PATTERND 2-0 and is supported by the first, second, seventh,
and eighth transactions BeqTranFile . Thus, the TID-list of patter@-0 is{O 1 6 8} (TID numbers start from

0).

0-0990.000 1 0-0013456789
12-17911-1789-1191317 0-1 8 80.000 2 0-101356789
13-1126789-1121317 0-2 9 90.000 9 0-2012345679
9-110131518-159-1111518 1-06 60.000 1 -1 9 1-0013456
1245-1719-1124-167911 1-1770.000 1 2 1-10135689
014-191113-115 2-0440.0001-178 2-00168
012671419-12-18912-11619 2-1440.00012-17 2-10368
123-178-1691012-11619 180.0 2-2440.00012-19 2-20568
24678-11112141617-10169 1113 260.0 2-3440.00012-18 2-30356
124-1078-111142-18-11418 340.0 3-0330.00012-17-19 3-0036
0124691013 430.0 3-1330.00012-178 3-1068
(a) Sequential Transaction File "SegTranFile" (b) Length Decreasing (c) Frequent Pattern File (d) TID-List File

Support File "SeqTranFile.fp" "SeqTranFile.tid"

Figure 8: Examples of the Input/Output files used/produced by SLPMiner.

12

4 The FSG Program

USAGE

fsg [optional parameters] GraphTranFile

DESCRIPTION

Finds all frequent connected undirected subgraphs satisfying a given minimum support threshold constraint.

REQUIRED PARAMETER

GraphTranFile

The name of the file that stores the input graph transactions from which frequent connected subgraphs
are to be found. The format of the graph transaction file is described in Section 4.1.1.

OPTIONAL PARAMETERS
-s FLOAT, --support=FLOAT

-m | NT,

-M | NT,

This parameter sets the minimum support in percentile. This value must be in the r&@@e 90.0].

The default value is 5.0%. Note that if the minimum support is set to 0.0, all the frequent subgraphs
with at least one supporting transaction are generated.

--m nsi ze=I NT

This parameter sets the minimum size of frequent connected subgraphs to be generated. The size
of a frequent subgraph is the total number of edges in it. For example, the sizes of a triangle and a
square are three and four respectively. The default value is one.

- - maxsi ze=I NT

This parameter sets the maximum size of frequent connected subgraphs to be generated. The default
value is equal to INTMAX defined in<limit.h> and 2,147,483,647 on typical 32-bit systems. If

this parameter is set to a small value, the program will stop after finding all the frequent subgraphs
of the specified size.

-X, --nmaxi mal

Generates only maximal frequent subgraphs. Because the current verEi8G afoes not contain
any optimizations for getting the maximal patterns only, note that this option does not reduce the
running time.

-t, --tid-list

Generates a file with the suffix “.tid” which contains the lists of supporting transaction IDs for each
frequent subgraph discovered. These lists are referredftbaBsts. The format of the TID-list file
is described in Section 4.2.3.

-p, --parent-children-1list

Generates a file that shows the parent-children relationships among frequent patterns. These rela-
tionships are referred to &C-list. For each frequent patterp, its PC-list contains all frequent
patternsc, such that is a maximal frequent sub-pattern pf

The PC-lists are stored in a file, which has the same name as the input file with file extension “.pc”
added. The format of the PC-list file is described in Section 4.2.2.

-h, --help

OUTPUT

Displays a short summary of the options to the standard output.

The discovered frequent connected subgraphs are stored in a file with the same basename as the input file and
with the suffix “.fp”. The format of this frequent pattern file is described in Section 4.2.1.

NOTE

FSG is implemented as in-memory program. The size of the datasets that can be processed are limited by the
amount of physical memory in your system.

13

4.1 Input File Format

FSG takes as input th&raphTranFile that contains the graph transactions from which the frequent patterns will be
discovered. Basically this format is a simplified version of SUBDUE [2] graph file format. The detail of the format is
described in the rest of this section.

4.1.1 Graph Transaction File

A graph transaction file is an ASCII file that contain a set of graph transactions. Each graph transaction begins with
the transaction line which starts with the lettef“Next, a set of vertex lines follows. Then, a set of edge lines comes.
There are only four types of lines including comments which are shown in Table 1. Vertex IDs are non-negative
integers assigned in the increasing order sequentially from zero. If a grapth basices, there should kid vertex

lines whose £ID>"is from 0 to N — 1. If a graph hasV edges, there should bd lines in total each of which
contains a pair of vertex IDs as its endpoints.

Line type Format Explanation

Comment | # .. Everything ignored after “#”

Transaction| t The beginning of a transaction

Vertex v <ID> <LABEL> A vertex ID<ID> and its vertex labetLABEL>
<ID> a non-negative integexLABEL> a string without space

Edge u <ID1> <ID2> <LABEL> Endpoints<ID1> and<ID2> , and its edge labelLABEL>
<ID1>,<ID2> vertex IDs,<ID1> < <ID2>
<LABEL> a string without spaces

Table 1: Format of the graph transaction file

Figure 9 shows a graph of four vertices and five edges. Edges are unlate]edl €dges have the same labEly
and vertex labels are eitheblack " or “white ”. Figure 10 shows the corresponding graph transaction. Note that
vertex and edge lines must be sorted in the ascending order based on the vertex IDs and each edge appears only once
because<ID1> " must be smaller than<iD2> " in the edge line.

white

4 vertices and 5 edges
white
white

t#
o :
v 1
v 2 black
v 3 white
uO01lE
-2 3
u 0
ul
ul

white white black

WNWN
mmmm

Figure 9: Sample graph Figure 10: Sample graph transaction

4.2 Output File Formats

Upon successful executioRSG outputs the discovered patterns into a file calledftiequent pattern file. If the

-X option has been specified, then this file contains only the maximal patterns, otherwise it contains all patterns that
satisfy the minimum support constraint. In addition, if the user has specifieg tloption, FSG will generate the

PC-list file that contains the parent-children relationships among frequent patterns. Similarly, if the user has specified
the-t option,FSG will generate th'ID-list file that shows the graph transactions that are supported by each pattern.
The format of these files is described in the rest of this section.

14

4.2.1 Frequent Pattern File

The format of the frequent-pattern file (*.fp) theSG uses to output the patterns that it discovered is similar to that
used for specifying the input graph transactions (described in Section 4.1.1). This is beS&iseutput is a set of
frequent subgraphs which can also be regarded as a set of graphs.

The only format difference is that the frequent-pattern file contains additional information about the different pat-
terns such as their pattern ID and their frequencies. This information appear as comments in each “Transaction” line

(i.e., the line starts witht'”). The exact format of the “Transaction” line of the frequent-pattern file and its meaning
is shown in Table 2.

Line type Format Explanation
Transaction| t # <PATTERN.ID>, <COUNT> | The beginning of a transaction, i.e., a frequent subgraph.
<PATTERNID> is the identifier assigned to the subgraph. This identifier
is in a similarLEVEL-NODE format as that used blyPMiner and SLP-
Miner. However, in the case ¢fSG, LEVEL corresponds to the numbe
of edges in the frequent subgraph. The same ID is used by the PQ-List
and TID-List files.
<COUNT>shows the total number of transactions which contain at least
one instance of the frequent subgraph. Naturally this count should be
greater or equal to the support threshold specified by a user.

=

Table 2: Format of the “Transaction” line of the frequent-pattern file.

4.2.2 PC-List File

The format of the PC-list file is identical to that usedltyMiner and was described in Section 2.2.2.

Figure 11 shows a frequent subgraph of size 5 as well as its 5 subgraphs of size 4. Note that there are five ways to
obtain size-4 subgraphs from this size-5 subgraph by removing each edge, only three are distinct in terms of isomor-
phism. The corresponding line in the PC-list file becomes “5-0 4-0 4-1 4-2” showing that the subgraph 5-0 contains
the three distinct subgraphs 4-0, 4-1 and 4-2.

(o)
e/o‘e
(o) (o) (o)
o—a eAz o/e
(o) (o)
® o‘z e/o o
Figure 11: Sample subgraph of size 5 and its children of size 4 Figure 12: The corresponding line in the PC-list file

4.2.3 TID-List File

The format of the TID-list file is identical to that used By PMiner and was described in Section 3.2.3.

4.3 Examples

Figure 13 shows the execution BEG at the command line and its output to the standard output. The input file is
named “test.g” which is shown in Figure 14. The discovered frequent patterns are stored in the file named “test.fp”

15

user@machine:” 1 $./fsg -s 100.0 -pt test.g \
fsg 1.34 (PAFI 1.0) Copyright 2003, Regents of the University of Minnesota

Transaction File Information ------------=ssmmnmemmeemn

Transaction File Name: test.g
Number of Input Transactions: 2
Number of Distinct Edge Labels: 1
Number of Distinct Vertex Labels: 2
Average Number of Edges In a Transaction: 4
Average Number of Vertices In a Transaction: 4

Max Number of Edges In a Transaction: 6
Max Number of Vertices In a Transaction: 4

Options
Min Output Pattern Size: 1
Max Output Pattern Size: 2147483647(INT_MAX)
Min Support Threshold: 100.0% (2 transactions)
Generate Only Maximal Patterns: No
Generate PC-List: Yes
Generate TID-List: Yes

Outputs
Frequent Pattern File: test.fp
PC-List File: test.pc
TID-List File: test.tid

Number of Size-1 Frequent Patterns: 1
Number of Size-2 Frequent Patterns: 1
Number of Size-3 Candidates: 3
Number of Size-3 Frequent Patterns: 1

Largest Frequent Pattern Size:
Total Number of Candidates Generated:
Total Number of Frequent Patterns Found: 3

w W

Timing Information

\ Elapsed User CPU Time: 0.0[sec] /

Figure 13: Execution of FSG

and is shown in Figure 17. Note that besides the actual discovered subgraphs, the frequent pattern file also contains
a log of the run as comment fields. The options “-p” and “-t” are used each of which specifies to generate the files
“test.pc” and “test.tid” respectively. The contents of the two files are shown in Figures 15 and 16.

t # triangle

vov

vi1iyvVv

v2yVv

uo01lE

uo02E

ul?2E

t # K4

vovVv

vi1iyv

va2yVv

v3W

uO01lE

U0 2E

uo03E

ul?2E 1-0 1-0 0 1

ul3E 2-0 1-0 200 1

u23E 3-0 20 3001
Figure 14: Graph Transaction File test.g Figure 15: PC-List File test.pc Figure 16: PC-List File test.tid

16

HEHFHFHFHFIEHFFRFRIHFCcCcOCLS<LSKLSKTCcOCLS<K<<K7TCLS< " HHHFHRIHFHFF T FEHFH T H

fsg 1.34 (PAFI 1.0) Copyright 2003, Regents of the University of Minnesota

Transaction File Information
Transaction File Name:
Number of Input Transactions:
Number of Distinct Edge Labels:
Number of Distinct Vertex Labels:

test.g
2
1
2

Average Number of Edges In a Transaction: 4
Average Number of Vertices In a Transaction: 4

Max Number of Edges In a Transaction:

6

Max Number of Vertices In a Transaction: 4

Options

Min Output Pattern Size:
Max Output Pattern Size:
Min Support Threshold:

1
2147483647(INT_MAX)
100.0\% (2 transactions)

Generate Only Maximal Patterns: Yes
Generate PC-List: Yes
Generate TID-List: Yes

Outputs
Frequent Pattern File: test.fp
PC-List File: test.pc
TID-List File: test.tid

1-0, 2

(VY

1V

01E

2-0, 2

(VY

1V

2V

01E

02E

3-0, 2

oV

1V

2V

01E

02E

12E
Number of Size-1 Frequent Patterns: 1
Number of Size-2 Frequent Patterns: 1
Number of Size-3 Candidates: 3
Number of Size-3 Frequent Patterns: 1
Largest Frequent Pattern Size: 3
Total Number of Candidates Generated: 3
Total Number of Frequent Patterns Found: 3

Timing Information
Elapsed User CPU Time: 0.0[sec]

Figure 17: FP File test.fp

17

5 Filename Rules

PAFI's stand-alone programs use a specific file extension for each file type as shown in Table 3. In the table, we assume
the input transaction, sequential transaction, or graph transaction TileS$, but you can choose any file name. By
default,LPMiner, SLPMiner, andFSG generate those files in Table 3 on the directory where the input transaction
file resides. Only one exception is *M.files that can be put in a directory of your choice. This is because these
files are accessed so extensively that the I/O performance on these files affects the amount of timeShaRditogr
dramatically.

Note that if a file with the same name exidt®Miner, SLPMiner, andFSG will overwrite it without asking you.
Therefore, it is safe to avoid putting files that have the same prefix as the input transaction file. Upon a successful
termination, all temporary files are deleted.

File Name Input/Output | Description Option | Program

TEST Input Iltem/Sequence/Graph Transaction file | N/A LPMiner, SLPMiner, FSG
TEST.fp Output Frequent pattern file N/A LPMiner, SLPMiner, FSG
TEST.pc Output PC list file -p LPMiner, SLPMiner, FSG
TEST.tid Output TID list file -t SLPMiner, FSG

TEST.t _conv Temporary | Converted transaction file N/A LPMiner, SLPMiner
TEST.fp _conv | Temporary | Converted frequent pattern file N/A LPMiner, SLPMiner
TEST.slp Temporary | Binary transaction file N/A SLPMiner

TEST.f. N Temporary | Projected database fil&l(=0,1,2,...) | N/A SLPMiner

Table 3: Extensions of files derived from transaction file “TEST".

6 System Requirements and Contact Information

PAFI is written in ANSI C and C++ and has been extensively tested under Linux and Solaris. At thispsilst
distribution is only in a binary format, as it is actively under development. However, we expect to make the source
code available in future releases.

Even thoughPAFI contains no known bugs, it does not mean that all of its bugs have been found and fixed. If you
find any problems, please send emaikénypis@cs.umn.edu, with a brief description of the problem you have found.
Also, any future updates t@AFI will be made available on WWW ditttp: //mww.cs.umn.edu/"pafi.

7 Copyright Notice and Usage Terms

The PAFI package is copyrighted by the Regents of the University of Minnesota. It can be freely used for educational
and research purposes by non-profit institutions and US government agencies only. Other organizations are allowed to
usePAFI only for evaluation purposes, and any further uses will require prior approval. The software may not be sold
or redistributed without prior approval. One may make copies of the software for their use provided that the copies,
are not sold or distributed, are used under the same terms and conditions.

As unestablished research software, this code is provided on an “as is” basis without warranty of any kind, either
expressed or implied. The downloading, or executing any part of this software constitutes an implicit agreement to
these terms. These terms and conditions are subject to change at any time without prior notice.

8 References

[1] Mukund Deshpande and George Karypis. Automated approaches for classifying structarecebaings of the
2nd ACM S GKDD Werkshop on Data Mining in Bioinformatics, 2002.

18

[2] L. Holder, D. Cook, and S. Djoko. Substructure discovery in the subdue systefroteedings of the AAAI
Workshop on Knowledge Discovery in Databases, pages 169—-180, 1994.

[3] Michihiro Kuramochi and George Karypis. Frequent subgraph discoverlEHE International Conference on
Data Mining, 2001. Also available as a UMN-CS technical report, TR# 01-028.

[4] Michihiro Kuramochi and George Karypis. An efficient algorithm for discovering frequent subgrajteE
Transactions on Knowledge and Data Engineering, (in press), 2003.

[5] Masakazu Seno and George Karypis. Lpminer: An algorithm for finding frequent itemsets using length-decreasing
support constraint. IREEE International Conference on Data Mining, 2001. Also available as a UMN-CS
technical report, TR# 01-026.

[6] Masakazu Seno and George Karypis. Slpminer: An algorithm for finding frequent sequential patterns using
length-decreasing support constraintl BEE I nternational Conference on Data Mining, 2002.

19

